Signed line graphs with least eigenvalue-2: The star complement technique

被引:15
作者
Belardo, Francesco [1 ,2 ]
Marzi, Enzo M. Li [3 ]
Simic, Slobodan K. [4 ,5 ]
机构
[1] Univ Primorska FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
[2] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Naples, Italy
[3] Univ Messina, Dept Math & Comp Sci, I-98100 Messina, Italy
[4] State Univ Novi Pazar, Vuka Karadzica Bb, Novi Pazar 36300, Serbia
[5] Math Inst SANU, POB 367, Belgrade 11001, Serbia
关键词
Signed graph; Line graph; Star complement; Eigenspaces; Eigenvector;
D O I
10.1016/j.dam.2016.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use star complement technique to construct a basis for -2 of signed line graphs using their root signed graphs. In other words, we offer a generalization of the corresponding results known in the literature for (unsigned) graphs in the context of line graphs and generalized line graphs. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1997, Eigenspaces of graphs
[2]  
[Anonymous], 2009, An Introduction to the Theory of Graph Spectra
[3]   On the Laplacian coefficients of signed graphs [J].
Belardo, Francesco ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 :94-113
[4]  
Brankovic L., 1996, C NUMER, V120, P169
[5]  
Brankovic L., 2003, BEOGRAD PUBL ELEKT M, V14, P37
[6]  
Cvetkovic D., SPECTRAL GEN LINE GR, V2
[7]  
Cvetkovic D., 2001, J ALGEBR COMB, P5
[8]  
Cvetkovit D.M., 1995, SPECTRA GRAPHS THEOR, Vthird
[9]   Edge-signed graphs with smallest eigenvalue greater than - 2 [J].
Greaves, Gary ;
Koolen, Jack ;
Munemasa, Akihiro ;
Sano, Yoshio ;
Taniguchi, Tetsuji .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 110 :90-111
[10]  
Hoffman A. J., 1970, P CALG INT C COMB ST, P173