Micromagnetic simulation studies of ferromagnetic part spheres

被引:23
|
作者
Boardman, RP
Zimmermann, J
Fangohr, H [1 ]
Zhukov, AA
de Groot, PAJ
机构
[1] Univ Southampton, Sch Engn Sci, Computat Engn & Design Grp, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
关键词
D O I
10.1063/1.1850073
中图分类号
O59 [应用物理学];
学科分类号
摘要
Self-assembly techniques can be used to produce periodic arrays of magnetic nanostructures. We have developed a double-template technique using electrochemical deposition. This method produces arrays of dots which are of spherical shape, as opposed to those prepared by standard lithographic techniques, which are usually cylindrical. By varying the amount of material that is deposited electrochemically, spheres of diameter d can be grown up to varying heights h < d. Thus different spherical shapes can be created ranging from shallow dots to almost complete spheres. Using micromagnetic modeling, we calculate numerically the magnetization reversal of the soft part spherical particles. The observed reversal mechanisms range from single domain reversal at small radii to vortex movement in shallow systems at larger radii and vortex core reversal, as observed in spheres at larger heights. We present a phase diagram of the reversal behavior as a function of radius and growth height. Additionally, we compare simulation results of hybrid finite element/boundary element and finite difference calculations for the same systems. (c) 2005 American Institute Of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Micromagnetic Studies of the Effects of Crystalline Anisotropy on the Remanent Magnetization of Ferromagnetic Nanorings
    Chaves-O'Flynn, Gabriel D.
    Muratov, Cyrill B.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) : 3125 - 3128
  • [22] Micromagnetic simulation of magnetization reversal processes in ferromagnetic cubes from quasisaturation state
    Lu, M
    Leonard, PJ
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (34) : 8089 - 8101
  • [23] Micromagnetic Simulation of Ferromagnetic Resonance in a Nanosized Bilayer Exchange-Coupled Square-Shaped Ferromagnetic Film
    Shulga, N. V.
    Doroshenko, R. A.
    PHYSICS OF METALS AND METALLOGRAPHY, 2024, 125 (01): : 7 - 11
  • [24] Micromagnetic calculations of ferromagnetic resonance in submicron ferromagnetic particles
    Jung, S
    Ketterson, JB
    Chandrasekhar, V
    PHYSICAL REVIEW B, 2002, 66 (13): : 1 - 4
  • [25] Micromagnetic studies on magnetic spectra of submicron ferromagnetic particles with different aspect ratio
    Chen, Jihong
    Chen, Jiangwei
    Tang, Dongming
    Lu, Mu
    Lu, Huaixian
    PHYSICS LETTERS A, 2010, 374 (04) : 620 - 624
  • [26] Micromagnetic Simulation of the Depinning Field Domain Wall on Symmetric Double Notch Ferromagnetic Wires
    Djuhana, Dede
    Supriyanto, Erwin
    Kim, Dong Hyun
    MAKARA JOURNAL OF SCIENCE, 2014, 18 (02) : 42 - 46
  • [27] Micromagnetic simulation of exchange coupled ferri-/ferromagnetic composite in bit patterned media
    Oezelt, Harald
    Kovacs, Alexander
    Wohlhueter, Phillip
    Kirk, Eugenie
    Nissen, Dennis
    Matthes, Patrick
    Heyderman, Laura Jane
    Albrecht, Manfred
    Schrefl, Thomas
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
  • [28] Micromagnetic Simulation of Domain Structure Transition in Ferromagnetic Nanospheres under Zero External Field
    Djuhana, Dede
    Kurniawan, Candra
    Kim, Dong-Hyun
    Widodo, Agus Tri
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2021, 12 (03) : 539 - 548
  • [29] Micromagnetic Simulation of Damped Oscillatory Behavior of Domain Wall Propagation in Sinusoidal Ferromagnetic Nanowire
    Piao, H. -G.
    Shim, J. -H.
    Djuhana, D.
    Lee, S. -H.
    Jun, S. -H.
    Heo, C. -M.
    Oh, S. -K.
    Yu, S. -C.
    Kim, D. -H.
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (02) : 224 - 227
  • [30] Micromagnetic behavior of conical ferromagnetic particles
    Ross, CA
    Farhoud, M
    Hwang, M
    Smith, HI
    Redjdal, M
    Humphrey, FB
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (02) : 1310 - 1319