BERNSTEIN-TYPE THEOREMS IN SEMI-RIEMANNIAN WARPED PRODUCTS

被引:29
作者
Camargo, F. [1 ]
Caminha, A. [2 ]
de Lima, H. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
Semi-Riemannian manifolds; Lorentz geometry; hyperbolic space; steady state space; spacelike hypersurfaces; mean curvature; Bernstein-type theorems; CONSTANT MEAN-CURVATURE; SPACELIKE HYPERSURFACES; UNIQUENESS;
D O I
10.1090/S0002-9939-2010-10597-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with complete hypersurfaces immersed in the (n + 1)-dimensional hyperbolic and steady state spaces. By applying a technique of S. T. Yau and imposing suitable conditions on both the r-th mean curvatures and on the norm of the gradient of the height function, we obtain Bernstein-type results in each of these ambient spaces.
引用
收藏
页码:1841 / 1850
页数:10
相关论文
共 19 条
[11]  
Hawking S.W., 1973, LARGE SCALE STRUCTUR
[12]   A NEW MODEL FOR THE EXPANDING UNIVERSE [J].
HOYLE, F .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1948, 108 (05) :372-382
[14]   Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces [J].
Montiel, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (04) :915-938
[15]   Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes [J].
Montiel, S .
MATHEMATISCHE ANNALEN, 1999, 314 (03) :529-553
[16]  
Montiel S, 1999, INDIANA U MATH J, V48, P711
[17]  
Oneill Barrett, 1983, Pure and Applied Mathematics
[18]  
ROSENBERG H, 1993, B SCI MATH, V117, P211
[19]   SOME FUNCTION-THEORETIC PROPERTIES OF COMPLETE RIEMANNIAN MANIFOLD AND THEIR APPLICATIONS TO GEOMETRY [J].
YAU, ST .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (07) :659-670