Rational Design of Transition Metal-Based Materials for Highly Efficient Electrocatalysis

被引:325
作者
Dou, Shuo [1 ,2 ]
Wang, Xin [2 ]
Wang, Shuangyin [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Prov Hunan Key Lab Graphene Mat & Devices, State Key Lab Chem Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
active sites; electrocatalysts; electron configurations; transition metals; OXYGEN REDUCTION REACTION; HYDROGEN EVOLUTION REACTION; ACTIVE EDGE SITES; ORGANIC FRAMEWORK; ELECTROCHEMICAL REDUCTION; HIGH-PERFORMANCE; AU NANOPARTICLES; WATER OXIDATION; FE-N/C; MOS2;
D O I
10.1002/smtd.201800211
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalysts play critical roles in the renewable electrochemical energy storage and conversion systems. The conventional noble metal-based electrocatalysts cannot satisfy the demand of large-scale manufacturing due to their high-price and scarce reserves in the earth. Therefore, rational designing of transition metal-based materials to endow high activity, selectivity, stability, and low cost has been regarded as an alternative of noble metal-based materials. Here, recent effective and facile strategies to rationally design transition metal-based electrocatalysts, such as increasing the number active sties, improving the utilization of active sites (atomic-scale catalysts), modulating the electron configurations, as well as controlling the lattice facets, for oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction reaction, are summarized. It is believed that based on the understanding of fundamental design principles, well-designed non-noble metal and even metal free electrocatalysts would further make the electrochemical energy conversion and storage great promise in the future.
引用
收藏
页数:17
相关论文
共 149 条
[1]   From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Liu, Xiaobo ;
Pu, Zonghua ;
Li, Wenqiang ;
Li, Qidong ;
Zhang, Jie ;
Tang, Haolin ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (05)
[2]   Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
Liu, Xiaobo ;
Owusu, Kwadwo Asare ;
Monestel, Hellen Gabriela Rivera ;
Boakye, Felix Ofori ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (44)
[3]  
[Anonymous], 2017, Angew. Chem.
[4]  
[Anonymous], 2018, ANGEW CHEM
[5]  
[Anonymous], 2015, ANGEW CHEM, DOI DOI 10.1002/ANGE.201412214
[6]   Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells [J].
Antolini, Ermete .
ACS CATALYSIS, 2014, 4 (05) :1426-1440
[7]   Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle [J].
Bao, Di ;
Zhang, Qi ;
Meng, Fan-Lu ;
Zhong, Hai-Xia ;
Shi, Miao-Miao ;
Zhang, Yu ;
Yan, Jun-Min ;
Jiang, Qing ;
Zhang, Xin-Bo .
ADVANCED MATERIALS, 2017, 29 (03)
[8]   Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation [J].
Bao, Jian ;
Zhang, Xiaodong ;
Fan, Bo ;
Zhang, Jiajia ;
Zhou, Min ;
Yang, Wenlong ;
Hu, Xin ;
Wang, Hui ;
Pan, Bicai ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (25) :7399-7404
[9]   A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Lee, Kunchan ;
Liu, Hansan ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wang, Haijiang ;
Zhang, Jiujun .
ELECTROCHIMICA ACTA, 2008, 53 (15) :4937-4951
[10]   One-pot fabrication of yolk-shell structured La0.9Sr0.1CoO3 perovskite microspheres with enhanced catalytic activities for oxygen reduction and evolution reactions [J].
Bie, Shiyu ;
Zhu, Yongqiang ;
Su, Jianmin ;
Jin, Chao ;
Liu, Shanhu ;
Yang, Ruizhi ;
Wu, Jiao .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (44) :22448-22453