Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials

被引:102
|
作者
Lansford, Joshua L. [1 ]
Vlachos, Dionisios G. [1 ,2 ]
机构
[1] Univ Delaware, Dept Chem Biomol Engn, 150 Acad St, Newark, DE 19716 USA
[2] Univ Delaware, Catalysis Ctr Energy Innovat, 221 Acad St, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
IN-MATERIAL POLARIZABILITIES; CO ELECTROOXIDATION; SCALING RELATIONS; ACTIVE-SITE; ADSORPTION; PT(100); PLATINUM; RECONSTRUCTION; VIBRATIONS; SCATTERING;
D O I
10.1038/s41467-020-15340-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is a need to characterize complex materials and their dynamics under reaction conditions to accelerate materials design. Adsorbate vibrational excitations are selective to adsorbate/surface interactions and infrared (IR) spectra associated with activating adsorbate vibrational modes are accurate, capture details of most modes, and can be obtained operando. Current interpretation depends on heuristic peak assignments for simple spectra, precluding the possibility of obtaining detailed structural information. Here, we combine data-based approaches with chemistry-dependent problem formulation to develop physics-driven surrogate models that generate synthetic IR spectra from first-principles calculations. Using synthetic IR spectra of carbon monoxide on platinum, we implement multinomial regression via neural network ensembles to learn probability distributions functions (pdfs) that describe adsorption sites and quantify uncertainty. We use these pdfs to infer detailed surface microstructure from experimental spectra and extend this methodology to other systems as a first step towards characterizing complex interfaces and closing the materials gap.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
    Joshua L. Lansford
    Dionisios G. Vlachos
    Nature Communications, 11
  • [2] Data- and Physics-Driven Deep Learning Based Reconstruction for Fast MRI: Fundamentals and Methodologies
    Huang, Jiahao
    Wu, Yinzhe
    Wang, Fanwen
    Fang, Yingying
    Nan, Yang
    Alkan, Cagan
    Abraham, Daniel
    Liao, Congyu
    Xu, Lei
    Gao, Zhifan
    Wu, Weiwen
    Zhu, Lei
    Chen, Zhaolin
    Lally, Peter
    Bangerter, Neal
    Setsompop, Kawin
    Guo, Yike
    Rueckert, Daniel
    Wang, Ge
    Yang, Guang
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2025, 18 : 152 - 171
  • [3] Physics-Driven Machine Learning for Computational Imaging
    Wen, Bihan
    Ravishankar, Saiprasad
    Zhao, Zhizhen
    Giryes, Raja
    Ye, Jong Chul
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (01) : 28 - 30
  • [4] Performance Analysis of Electrical Machines Using a Hybrid Data- and Physics-Driven Model
    Parekh, Vivek
    Flore, Dominik
    Schops, Sebastian
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2023, 38 (01) : 530 - 539
  • [5] Introduction to this special section: Physics-driven machine learning
    Shaw, Simon
    Kaplan, Sam
    Li, Chengbo
    Leading Edge, 2022, 41 (06):
  • [6] Machine learning and physics-driven modelling and simulation of multiphase systems
    Basha, Nausheen
    Arcucci, Rossella
    Angeli, Panagiota
    Anastasiou, Charitos
    Abadie, Thomas
    Casas, Cesar Quilodran
    Chen, Jianhua
    Cheng, Sibo
    Chagot, Loic
    Galvanin, Federico
    Heaney, Claire E.
    Hossein, Fria
    Hu, Jinwei
    Kovalchuk, Nina
    Kalli, Maria
    Kahouadji, Lyes
    Kerhouant, Morgan
    Lavino, Alessio
    Liang, Fuyue
    Nathanael, Konstantia
    Magri, Luca
    Lettieri, Paola
    Materazzi, Massimiliano
    Erigo, Matteo
    Pico, Paula
    Pain, Christopher C.
    Shams, Mosayeb
    Simmons, Mark
    Traverso, Tullio
    Valdes, Juan Pablo
    Wolffs, Zef
    Zhu, Kewei
    Zhuang, Yilin
    Matar, Omar K.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 179
  • [7] Physics-Driven Machine Learning for Computational Imaging: Part 2
    Wen, Bihan
    Ravishankar, Saiprasad
    Zhao, Zhizhen
    Giryes, Raja
    Ye, Jong Chul
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (02) : 13 - 15
  • [8] Physics-driven deep-learning for marine CSEM data inversion
    Liang, Hao
    Gao, Ruoyun
    Yin, Changchun
    Su, Yang
    He, Zhanxiang
    Liu, Yunhe
    JOURNAL OF APPLIED GEOPHYSICS, 2024, 229
  • [9] Physics-driven Machine Learning for the Prediction of Coronal Mass Ejections' Travel Times
    Guastavino, Sabrina
    Candiani, Valentina
    Bemporad, Alessandro
    Marchetti, Francesco
    Benvenuto, Federico
    Massone, Anna Maria
    Mancuso, Salvatore
    Susino, Roberto
    Telloni, Daniele
    Fineschi, Silvano
    Michele, Piana
    ASTROPHYSICAL JOURNAL, 2023, 954 (02):
  • [10] Deep learning phase recovery: data-driven, physics-driven, or a combination of both?
    Wang, Kaiqiang
    Lam, Edmund Y.
    ADVANCED PHOTONICS NEXUS, 2024, 3 (05):