Moving object detection using median-based scale invariant local ternary pattern for video surveillance system

被引:8
作者
Kalirajan, K. [1 ]
Sudha, M. [2 ]
机构
[1] SVS Coll Engn, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India
[2] Hindusthan Coll Engn & Technol, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India
关键词
Moving object detection; median-SILTP pattern; color histogram; video surveillance; background modelling;
D O I
10.3233/JIFS-162231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a novel moving object detection algorithm using median-based scale invariant local ternary pattern for intelligent video surveillance system. Both the texture and color local features are extracted from the incoming frames independently and they are combined at the classification level to improve the object detection results. Here, each incoming image frames are subdivided into several regions and the median-based scale invariant local ternary pattern (MD-SILTP) is obtained for each sub-region. Based on the MD-SILTP patterns, the texture histograms are computed and matched with the background model using the histogram intersection method. Furthermore, the color features are extracted through color histogram matching technique. The background model is then updated based on the best matching texture and color histograms. Finally, the color and texture information are combined for final feature classification. Experiment results illustrate that the fusion of MD-SILTP texture with the color features is stable than the others under smooth surface regions, image noises due to illumination changes, moving cast shadow, and scaling problems.
引用
收藏
页码:1933 / 1943
页数:11
相关论文
共 18 条
  • [1] Background and foreground modeling using nonparametric kernel density estimation for visual surveillance
    Elgammal, A
    Duraiswami, R
    Harwood, D
    Davis, LS
    [J]. PROCEEDINGS OF THE IEEE, 2002, 90 (07) : 1151 - 1163
  • [2] Fan Ma, 2013, Computer Vision - ACCV 2012 Workshops. ACCV 2012 International Workshops. Revised Selected Papers, P73, DOI 10.1007/978-3-642-37410-4_7
  • [3] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [4] Moving Object Detection Revisited: Speed and Robustness
    Han, Hong
    Zhu, Jianfei
    Liao, Shengcai
    Lei, Zhen
    Li, Stan Z.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2015, 25 (06) : 910 - 921
  • [5] Heikkila M., 2006, IEEE T PAMI, V28
  • [6] Description of interest regions with local binary patterns
    Heikkila, Marko
    Pietikainen, Matti
    Schmid, Cordelia
    [J]. PATTERN RECOGNITION, 2009, 42 (03) : 425 - 436
  • [7] Statistical modeling of complex backgrounds for foreground object detection
    Li, LY
    Huang, WM
    Gu, IYH
    Tian, Q
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (11) : 1459 - 1472
  • [8] Modeling Pixel Process with Scale Invariant Local Patterns for Background Subtraction in Complex Scenes
    Liao, Shengcai
    Zhao, Guoying
    Kellokumpu, Vili
    Pietikainen, Matti
    Li, Stan Z.
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 1301 - 1306
  • [9] NARAYANA M, 2012, IEEE C COMP VIS PATT
  • [10] Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    Ojala, T
    Pietikäinen, M
    Mäenpää, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) : 971 - 987