Predicting the Role of the Human Gut Microbiome in Constipation Using Machine-Learning Methods: A Meta-Analysis

被引:12
作者
Chen, Yutao [1 ,2 ]
Wu, Tong [1 ,2 ]
Lu, Wenwei [1 ,2 ]
Yuan, Weiwei [1 ,2 ]
Pan, Mingluo [1 ,2 ]
Lee, Yuan-Kun [3 ,4 ]
Zhao, Jianxin [1 ,2 ]
Zhang, Hao [1 ,2 ,5 ,6 ]
Chen, Wei [1 ,2 ,5 ]
Zhu, Jinlin [1 ,2 ]
Wang, Hongchao [1 ,2 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Microbiol & Immunol, Singapore 117545, Singapore
[4] Jiangnan Univ, Int Joint Res Lab Pharmabiot & Antibiot Resistanc, Wuxi 214122, Jiangsu, Peoples R China
[5] Wuxi Translat Med Res Ctr, Wuxi 214122, Jiangsu, Peoples R China
[6] Jiangsu Translat Med Res Inst Wuxi Branch, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
gut microbiome; constipation; machine learning; feature selection; classification model; FEATURE-SELECTION;
D O I
10.3390/microorganisms9102149
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
(1) Background: Constipation is a common condition that affects the health and the quality of life of patients. Recent studies have suggested that the gut microbiome is associated with constipation, but these studies were mainly focused on a single research cohort. Thus, we aimed to construct a classification model based on fecal bacterial and identify the potential gut microbes' biomarkers. (2) Methods: We collected 3056 fecal amplicon sequence data from five research cohorts. The data were subjected to a series of analyses, including alpha- and beta-diversity analyses, phylogenetic profiling analyses, and systematic machine learning to obtain a comprehensive understanding of the association between constipation and the gut microbiome. (3) Results: The alpha diversity of the bacterial community composition was higher in patients with constipation. Beta diversity analysis evidenced significant partitions between the two groups on the base of gut microbiota composition. Further, machine learning based on feature selection was performed to evaluate the utility of the gut microbiome as the potential biomarker for constipation. The Gradient Boosted Regression Trees after chi2 feature selection was the best model, exhibiting a validation performance of 70.7%. (4) Conclusions: We constructed an accurate constipation discriminant model and identified 15 key genera, including Serratia, Dorea, and Aeromonas, as possible biomarkers for constipation.
引用
收藏
页数:15
相关论文
共 41 条
[1]   A Metagenomic Meta-analysis Reveals Functional Signatures of Health and Disease in the Human Gut Microbiome [J].
Armour, Courtney R. ;
Nayfach, Stephen ;
Pollard, Katherine S. ;
Sharpton, Thomas J. .
MSYSTEMS, 2019, 4 (04)
[2]   American Gastroenterological Association Technical Review on Constipation [J].
Bharucha, Adil E. ;
Pemberton, John H. ;
Locke, G. Richard, III .
GASTROENTEROLOGY, 2013, 144 (01) :218-238
[3]  
Blatchford P, 2017, J NUTR SCI, V6, DOI 10.1017/jns.2017.52
[4]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[5]   Chronic constipation [J].
Camilleri, Michael ;
Ford, Alexander C. ;
Mawe, Gary M. ;
Dinning, Phil G. ;
Rao, Satish S. ;
Chey, William D. ;
Simren, Magnus ;
Lembo, Anthony ;
Young-Fadok, Tonia M. ;
Chang, Lin .
NATURE REVIEWS DISEASE PRIMERS, 2017, 3
[6]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[7]   Differential Effects of Lactobacillus casei Strain Shirota on Patients With Constipation Regarding Stool Consistency in China [J].
Chen, Shanbin ;
Ou, Yangwenshan ;
Zhao, Liang ;
Ll, Yang ;
Qiao, Zhenxing ;
Hao, Yanling ;
Ren, Fazheng .
JOURNAL OF NEUROGASTROENTEROLOGY AND MOTILITY, 2019, 25 (01) :148-158
[8]   Logistic regression for feature selection and soft classification of remote sensing data [J].
Cheng, Qi ;
Varshney, Pramod K. ;
Arora, Manoj K. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (04) :491-494
[9]   A role for the gut microbiota in IBS [J].
Collins, Stephen M. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2014, 11 (08) :497-505
[10]   Characterization of Microbiota in Children with Chronic Functional Constipation [J].
de Meij, Tim G. J. ;
de Groot, Evelien F. J. ;
Eck, Anat ;
Budding, Andries E. ;
Kneepkens, C. M. Frank ;
Benninga, Marc A. ;
van Bodegraven, Adriaan A. ;
Savelkoul, Paul H. M. .
PLOS ONE, 2016, 11 (10)