Identification of electromechanical oscillatory modes based on variational mode decomposition

被引:52
作者
Arrieta Paternina, Mario R. [1 ]
Tripathy, Rajesh Kumar [2 ]
Zamora-Mendez, Alejandro [3 ]
Dotta, Daniel [4 ]
机构
[1] Natl Autonomous Univ Mexico UNAM, Mexico City 04510, DF, Mexico
[2] Birla Inst Technol & Sci BITS Pilani, Hyderabad 500078, India
[3] Michoacan Univ St Nicholas Hidalgo UMSNH, Morelia 58030, Mich, Mexico
[4] Univ Estadual Campinas, BR-13083852 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Variational mode decomposition; Electromechanical modes; Power oscillations; Signal decomposition; Hilbert transform;
D O I
10.1016/j.epsr.2018.10.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces Variational Mode Decomposition (VMD) to identify electromechanical oscillatory modes in power systems. The identification process is based on the time-frequency analysis of nonlinear signals which arise after a large disturbance. VMD provides signal decomposition to convert the oscillatory power signal into mono-component signals or modes. This analysis is accomplished by an optimal and recursive statement in time frequency, yielding the modes and reconstructed signal estimates, and providing information on their instantaneous modal characteristics such as amplitude, frequency, damping and energy, via Hilbert transform. The results demonstrate the applicability of the proposition in both theoretical and a real wide-area monitoring system.
引用
收藏
页码:71 / 85
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 2016, J MED SYST
[2]   Real-time implementation of the digital Taylor-Fourier transform for identifying low frequency oscillations [J].
Arrieta Paternina, Mario R. ;
Ramirez, Juan M. ;
Zamora Mendez, Alejandro .
ELECTRIC POWER SYSTEMS RESEARCH, 2016, 140 :846-853
[3]  
Chamorro H. R., 2016, IEEE PES GEN M, P1, DOI [10.1109/PESGM.2016.7741186, DOI 10.1109/PESGM.2016.7741186]
[4]   Identification of Electromechanical Modes Based on the Digital Taylor-Fourier Transform [J].
de la O Serna, Jose Antonio ;
Ramirez, Juan M. ;
Zamora Mendez, Alejandro ;
Arrieta Paternina, Mario R. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (01) :206-215
[5]  
Dotta, 2010, P 8 IREP, P1, DOI [10.1109/IREP.2010.5563249, DOI 10.1109/IREP.2010.5563249]
[6]   Variational Mode Decomposition [J].
Dragomiretskiy, Konstantin ;
Zosso, Dominique .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (03) :531-544
[7]   Impact of Increased Penetration of DFIG-Based Wind Turbine Generators on Transient and Small Signal Stability of Power Systems [J].
Gautam, Durga ;
Vittal, Vijay ;
Harbour, Terry .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (03) :1426-1434
[8]   Empirical Wavelet Transform [J].
Gilles, Jerome .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (16) :3999-4010
[9]  
Hayes M. H., 1996, STATISTICAL DIGITAL
[10]   ADAPTIVE DATA ANALYSIS VIA SPARSE TIME-FREQUENCY REPRESENTATION [J].
Hou, Thomas Y. ;
Shi, Zuoqiang .
ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (1-2) :1-28