Structural variation discovery in the cancer genome using next generation sequencing: computational solutions and perspectives

被引:23
作者
Liu, Biao [1 ]
Conroy, Jeffrey M. [1 ]
Morrison, Carl D. [1 ]
Odunsi, Adekunle O. [2 ]
Qin, Maochun [3 ]
Wei, Lei [3 ]
Trump, Donald L. [4 ]
Johnson, Candace S. [5 ]
Liu, Song [3 ]
Wang, Jianmin [3 ]
机构
[1] Roswell Pk Canc Inst, Ctr Personalized Med, Buffalo, NY 14263 USA
[2] Roswell Pk Canc Inst, Dept Gynecol Oncol, Buffalo, NY 14263 USA
[3] Roswell Pk Canc Inst, Dept Biostat & Bioinformat, Buffalo, NY 14263 USA
[4] Roswell Pk Canc Inst, Dept Med, Buffalo, NY 14263 USA
[5] Roswell Pk Canc Inst, Dept Pharmacol & Therapeut, Buffalo, NY 14263 USA
关键词
structural variation; next generation sequencing; cancer genome analysis; somatic mutation; SINGLE-NUCLEOTIDE RESOLUTION; PAIRED-END; VARIANT DISCOVERY; READ ALIGNMENT; MUTATIONS; EVOLUTION; CHROMOTHRIPSIS; LANDSCAPE; POLYMORPHISM; ALGORITHMS;
D O I
10.18632/oncotarget.3491
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome.
引用
收藏
页码:5477 / 5489
页数:13
相关论文
共 106 条
[1]   Ovarian cancer evolution through stochastic genome alterations: defining the genomic role in ovarian cancer [J].
Abdallah, Batoul Y. ;
Horne, Steven D. ;
Kurkinen, Markku ;
Stevens, Joshua B. ;
Liu, Guo ;
Ye, Christine J. ;
Barbat, Justin ;
Bremer, Steven W. ;
Heng, Henry H. Q. .
SYSTEMS BIOLOGY IN REPRODUCTIVE MEDICINE, 2014, 60 (01) :2-13
[2]   SLOPE: a quick and accurate method for locating non-SNP structural variation from targeted next-generation sequence data [J].
Abel, Haley J. ;
Duncavage, Eric J. ;
Becker, Nils ;
Armstrong, Jon R. ;
Magrini, Vincent J. ;
Pfeifer, John D. .
BIOINFORMATICS, 2010, 26 (21) :2684-2688
[3]   AGE: defining breakpoints of genomic structural variants at single-nucleotide resolution, through optimal alignments with gap excision [J].
Abyzov, Alexej ;
Gerstein, Mark .
BIOINFORMATICS, 2011, 27 (05) :595-603
[4]   Chromosome aberrations in solid tumors [J].
Albertson, DG ;
Collins, C ;
McCormick, F ;
Gray, JW .
NATURE GENETICS, 2003, 34 (04) :369-376
[5]   APPLICATIONS OF NEXT-GENERATION SEQUENCING Genome structural variation discovery and genotyping [J].
Alkan, Can ;
Coe, Bradley P. ;
Eichler, Evan E. .
NATURE REVIEWS GENETICS, 2011, 12 (05) :363-375
[6]  
[Anonymous], BIOINFORMATICS
[7]   The evolution of the unstable cancer genome [J].
Burrell, Rebecca A. ;
Swanton, Charles .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2014, 24 :61-67
[8]  
Chaisson M.J., 2014, Nature
[9]   BreakTrans: uncovering the genomic architecture of gene fusions [J].
Chen, Ken ;
Navin, Nicholas E. ;
Wang, Yong ;
Schmidt, Heather K. ;
Wallis, John W. ;
Niu, Beifang ;
Fan, Xian ;
Zhao, Hao ;
McLellan, Michael D. ;
Hoadley, Katherine A. ;
Mardis, Elaine R. ;
Ley, Timothy J. ;
Perou, Charles M. ;
Wilson, Richard K. ;
Ding, Li .
GENOME BIOLOGY, 2013, 14 (08)
[10]  
Chen K, 2009, NAT METHODS, V6, P677, DOI [10.1038/nmeth.1363, 10.1038/NMETH.1363]