Unlocking the potential of biofuels via reaction pathways in van Krevelen diagrams

被引:42
作者
Lozano, Diana Catalina Palacio [1 ]
Jones, Hugh E. [1 ,2 ]
Reina, Tomas Ramirez [3 ]
Volpe, Roberto [4 ]
Barrow, Mark P. [1 ]
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Mol Analyt Sci Ctr Doctoral Training, Coventry CV4 7AL, W Midlands, England
[3] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, Surrey, England
[4] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
ORGANIC-MATTER; BIO-OIL; MASS-SPECTROMETRY; PYROLYSIS; BIOMASS; CONVERSION; VISUALIZATION; PERSPECTIVE; CHEMICALS; SPECTRA;
D O I
10.1039/d1gc01796a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Production of fuels and targeted chemicals from biomass represents a current challenge. Pyrolysis of biomass generates liquid bio-oils but these are highly complex mixtures. In order to obtain the desired products, optimized reaction conditions are required and this, in turn, drives the need for a fundamental understanding of the complex reaction network. Bio-oils are a complex mixture of thousands of individual molecular compositions, with differing numbers of carbon, hydrogen, nitrogen, and oxygen atoms (c, h, n, and o, respectively). The compositional spaces of such complex mixtures with high oxygen contents are commonly plotted using van Krevelen diagrams, where the H/C versus O/C ratios are displayed. For a bio-oil to be effectively used in engines, further upgrading is necessary to drive the compositions towards low oxygen and high hydrogen content (thus, low O/C and high H/C values). Here, we propose reaction vectors in van Krevelen diagrams to outline the possible reaction routes that favour the production of molecules with increased energy density, using examples of bio-oils produced from citrus waste (lemon and orange peel) and olive pulp. When reactions such as the addition or loss of CO, CO2, CH4, and H2O occur, a displacement of the compositions of molecules in terms of H/C and O/C coordinates is observed. The direction and magnitude of the displacement along each axis in van Krevelen diagrams depends upon the specific reaction route and the elemental content of each molecule. As a consequence of the wide diversity of compositions, different reaction routes are suggested that include multi-step upgrading processes, including hydrogenation and the elimination of oxygen in the form of CO and CO2. The detailed molecular composition of the starting material, plotted in van Krevelen diagrams for visualization, paves the way for greater insight into potential reaction pathways for components within these highly complex mixtures. In turn, the equations proposed hold potential to inform future production strategies, increasing the energy density of bio-oils whilst also reducing the undesirable char formation.
引用
收藏
页码:8949 / 8963
页数:15
相关论文
共 59 条
[1]   Catalytic conversion of biomass to biofuels [J].
Alonso, David Martin ;
Bond, Jesse Q. ;
Dumesic, James A. .
GREEN CHEMISTRY, 2010, 12 (09) :1493-1513
[2]   The art, science, and technology of charcoal production [J].
Antal, MJ ;
Gronli, M .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (08) :1619-1640
[3]   Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production [J].
Atabani, A. E. ;
Silitonga, A. S. ;
Ong, H. C. ;
Mahlia, T. M. I. ;
Masjuki, H. H. ;
Badruddin, Irfan Anjum ;
Fayaz, H. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 :211-245
[4]   Influence of Reactor Design on Product Distributions from Biomass Pyrolysis [J].
Barr, Meredith Rose ;
Volpe, Roberto ;
Kandiyoti, Rafael .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (16) :13734-13745
[5]  
Basu P, 2010, BIOMASS GASIFICATION AND PYROLYSIS: PRACTICAL DESIGN AND THEORY, P1
[6]   CHEMICAL MODELING OF KEROGENS [J].
BEHAR, F ;
VANDENBROUCKE, M .
ORGANIC GEOCHEMISTRY, 1987, 11 (01) :15-24
[7]   Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass [J].
Bond, Jesse Q. ;
Upadhye, Aniruddha A. ;
Olcay, Hakan ;
Tompsett, Geoffrey A. ;
Jae, Jungho ;
Xing, Rong ;
Alonso, David Martin ;
Wang, Dong ;
Zhang, Taiying ;
Kumar, Rajeev ;
Foster, Andrew ;
Sen, S. Murat ;
Maravelias, Christos T. ;
Malina, Robert ;
Barrett, Steven R. H. ;
Lobo, Raul ;
Wyman, Charles E. ;
Dumesic, James A. ;
Huber, George W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1500-1523
[8]   Van Krevelen diagram visualization of high resolution-mass spectrometry metabolomics data with OpenVanKrevelen [J].
Brockman, Stephen A. ;
Roden, Eric V. ;
Hegeman, Adrian D. .
METABOLOMICS, 2018, 14 (04)
[9]   Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels [J].
Carlos Serrano-Ruiz, Juan ;
Dumesic, James A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (01) :83-99
[10]   Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects [J].
Chan, Yi Herng ;
Loh, Soh Kheang ;
Chin, Bridgid Lai Fui ;
Yiin, Chung Loong ;
How, Bing Shen ;
Cheah, Kin Wai ;
Wong, Mee Kee ;
Loy, Adrian Chun Minh ;
Gwee, Yong Ling ;
Lo, Shirleen Lee Yuen ;
Yusup, Suzana ;
Lam, Su Shiung .
CHEMICAL ENGINEERING JOURNAL, 2020, 397