Harmonic spinors on the Davis hyperbolic 4-manifold

被引:2
作者
Ratcliffe, John G. [1 ]
Ruberman, Daniel [2 ]
Tschantz, Steven T. [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Brandeis Univ, Dept Math, Waltham, MA 02445 USA
关键词
Hyperbolic; 4-manifold; Dirac operator; harmonic spinor; Davis manifold; INDEX;
D O I
10.1142/S1793525320500247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the G-spin theorem to show that the Davis hyperbolic 4-manifold admits harmonic spinors. This is the first example of a closed hyperbolic 4-manifold that admits harmonic spinors. We also explicitly describe the spinor bundle of a spin hyperbolic 2- or 4-manifold and show how to calculated the subtle sign terms in the G-spin theorem for an isometry, with isolated fixed points, of a closed spin hyperbolic 2- or 4-manifold.
引用
收藏
页码:699 / 737
页数:39
相关论文
共 22 条
[1]   Surgery and harmonic spinors [J].
Ammann, Bernd ;
Dahl, Mattias ;
Humbert, Emmanuel .
ADVANCES IN MATHEMATICS, 2009, 220 (02) :523-539
[2]  
[Anonymous], 1992, Ann. Global Anal. Geom
[3]  
[Anonymous], 1970, Essays in Topology and Related Subjects
[4]  
Atiyah M., 1971, ANN SCI ECOLE NORM S, V4, P47
[5]   A LEFSCHETZ FIXED POINT FORMULA FOR ELLIPTIC COMPLEXES .2. APPLICATIONS [J].
ATIYAH, MF ;
BOTT, R .
ANNALS OF MATHEMATICS, 1968, 88 (03) :451-&
[6]  
ATIYAH MF, 1968, ANN MATH, V87, P484, DOI 10.2307/1970715
[7]  
ATIYAH MF, 1968, ANN MATH, V87, P546, DOI 10.2307/1970717
[8]  
Chern S.-S., 1955, ABH MATH SEM HAMBURG, V20, P117, DOI [DOI 10.1007/BF02960745, 10.1007/BF02960745]
[9]   A HYPERBOLIC 4-MANIFOLD [J].
DAVIS, MW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (02) :325-328
[10]  
Friedrich T., 2000, Dirac Operators in Riemannian Geometry