The effect of pulsating pressure on the performance of a PEM fuel cell with a wavy cathode surface

被引:50
作者
Ashorynejad, Hamid Reza [1 ]
Javaherdeh, Koroush [1 ]
Van den Akker, Harry E. A. [2 ]
机构
[1] Univ Guilan, Dept Mech Engn, Rasht, Iran
[2] Delft Univ Technol, Dept Chem Engn, Fac Sci Appl, NL-2600 AA Delft, Netherlands
关键词
PEM fuel cell; Pressure pulsation; Wavy wall; Pore-scale modeling; Heterogeneous GDL; Lattice Boltzmann method; LATTICE BOLTZMANN METHOD; MASS-TRANSFER ENHANCEMENT; LIQUID WATER TRANSPORT; GAS-DIFFUSION LAYER; NUMERICAL-SIMULATION; GRID REFINEMENT; FLOW CHANNEL; ELECTRODE; MODEL; PERMEABILITY;
D O I
10.1016/j.ijhydene.2016.05.291
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the context of attempts to improve the performance of Proton Exchange Membrane (PEM) fuel cells with a heterogeneous porous gas diffusion layer (GDL) consisting of carbon paper, we investigated whether - and to which degree - pulsating the pressure in a single waveform cathode channel affects the flow field in the channel and the performance of the fuel cell. In this 2-D study, the GDL was modeled by a stochastic arrangement of circular solid obstacles the macroscopic transport properties of which, such as permeability and tortuosity, were numerically simulated and found to compare favorably with experimental data. The focus of this paper is on the effects of varying amplitude and frequency of the pressure pulsations on cell performance. The results obtained show that a pulsating pressure "enhances the convective species transport to the reaction sites and thereby increases cell performance. We found that in a waveform channel a pulsatile pressure with an amplitude as high as 0.7 times the pressure drop over the cathode channel improves the fuel cell performance by around 7%, while the effect of pulsation frequency on output power is marginally small only. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14239 / 14251
页数:13
相关论文
共 50 条
[1]  
[Anonymous], 1995, PRINCIPLES HEAT TRAN
[2]  
Barbir F, 2005, SUSTAIN WORLD SER, P1
[3]   Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel [J].
Ben Amara, Mohamed El Amine ;
Ben Nasrallah, Sassi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (02) :1333-1342
[4]   Pore-scale simulation of coupled multiple physicochemical thermal processes in micro reactor for hydrogen production using lattice Boltzmann method [J].
Chen, Li ;
Kang, Qinjun ;
He, Ya-Ling ;
Tao, Wen-Quan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (19) :13943-13957
[5]   Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields [J].
Chen, Li ;
Luan, Hui-Bao ;
He, Ya-Ling ;
Tao, Wen-Quan .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 51 :132-144
[6]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[7]   Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack [J].
Chu, D ;
Jiang, RZ .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :128-133
[8]   Analytical approach to polymer electrolyte membrane fuel cell performance and optimization [J].
Das, Prodip K. ;
Li, Xianguo ;
Liu, Zhong-Sheng .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 604 (02) :72-90
[9]   Numerical simulation of direct methanol fuel cells using lattice Boltzmann method [J].
Delavar, Mojtaba Aghajani ;
Farhadi, Mousa ;
Sedighi, Kurosh .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) :9306-9317
[10]   Mechanisms of proton conductance in polymer electrolyte membranes [J].
Eikerling, M ;
Kornyshev, AA ;
Kuznetsov, AM ;
Ulstrup, J ;
Walbran, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (17) :3646-3662