Non-cooperative effects of lung surfactant proteins on early adsorption to an air/water interface

被引:13
|
作者
Schram, V
Anyan, WR
Hall, SB
机构
[1] Oregon Hlth & Sci Univ, Dept Med, Portland, OR 97239 USA
[2] Oregon Hlth & Sci Univ, Dept Physiol & Pharmacol, Portland, OR 97239 USA
[3] Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, Portland, OR 97239 USA
来源
关键词
SP-B; SP-C; vesicle; fusion; cooperativity; monolayer;
D O I
10.1016/j.bbamem.2003.08.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two small hydrophobic proteins, SP-B and SP-C, are responsible for rapid adsorption of pulmonary surfactant to the air/water interface. Despite their physiological importance, the number of protein molecules required to trigger an absorption event remains unknown. To investigate this issue, we varied the protein content of calf lung surfactant extract (CLSE) by dilution with protein-depleted surfactant lipids (neutral and phospholipids, N&PL). Vesicles of a constant size and of composition ranging between 100% N&PL and 100% CLSE were generated by probe sonication. Their adsorption kinetics to an air/water interface were monitored at different temperatures using a Wilhelmy plate to measure surface tension. When plotted versus protein concentration, the adsorption rates during the initial change in surface tension exhibit a diphasic behavior, first increasing rapidly and linearly between 0% and 25% CLSE, and then more slowly at higher concentrations. Direct linearity at low protein content (0-5% CLSE ratio) was confirmed at 37 degreesC. These observations argue against cooperative behavior, for which the adsorption rate would first rise slowly with the protein content, and their increase suddenly once the critical number of proteins on each vesicle is reached. The apparent activation energy E-a and the free energy of activation DeltaG(0)*, calculated from the temperature dependence of adsorption, further support the view that at least the early stages of protein-induced surfactant adsorption proceeds through a sequence of events involving not several, but a single surfactant protein. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 50 条
  • [41] Effect of humidity on the adsorption kinetics of lung surfactant at air-water interfaces
    Zuo, YY
    Gitiafroz, R
    Acosta, E
    Policova, Z
    Cox, PN
    Hair, ML
    Neumann, AW
    LANGMUIR, 2005, 21 (23) : 10593 - 10601
  • [42] Effects of surface pressure on the structure of the monolayer formed at the air/water interface by a non-ionic surfactant
    Ma, G.
    Barlow, D. J.
    Hollinshead, C. M.
    Harvey, R. D.
    Webster, J. R. P.
    Lawrence, M. J.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 317 (01) : 314 - 325
  • [43] Adsorption and Crystallization of Particles at the Air-Water Interface Induced by Minute Amounts of Surfactant
    Anyfantakis, Manos
    Vialetto, Jacopo
    Best, Andreas
    Auernhammer, Guenter K.
    Butt, Hans-Juergen
    Binks, Bernard P.
    Baigl, Damien
    LANGMUIR, 2018, 34 (50) : 15526 - 15536
  • [44] Adsorption of pulmonary surfactant protein D to phospholipid monolayers at the air-water interface
    Taneva, S
    Voelker, DR
    Keough, KMW
    BIOCHEMISTRY, 1997, 36 (26) : 8173 - 8179
  • [45] Adsorption behavior of DNA onto a cationic surfactant monolayer at the air-water interface
    Hansda, Chaitali
    Hussain, Syed Arshad
    Bhattacharjee, Debajyoti
    Paul, Pabitra Kr.
    SURFACE SCIENCE, 2013, 617 : 124 - 130
  • [46] A study on the asymptotic approximation for surfactant adsorption onto a spherical air-water interface
    Le, Thu Thi-Yen
    Hussain, Siam
    Shen, Chih-Yu
    Lin, Shi-Yow
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 644
  • [47] Differential effects of lysophosphatidylcholine on the adsorption of phospholipids to an air/water interface
    Biswas, Samares C.
    Rananavare, Shankar B.
    Hall, Stephen B.
    BIOPHYSICAL JOURNAL, 2007, 92 (02) : 493 - 501
  • [48] Dynamic adsorption of opposite-charged Gemini surfactant mixture at air/water interface
    Jiang, Rong
    Zhao, Jianxi
    Ma, Yanhua
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2006, 289 (1-3) : 233 - 236
  • [49] Dynamic surface tension and adsorption mechanism of surfactant benzyltrimethylammonium bromide at the air/water interface
    Gao, Yanhong
    Chai, Jinling
    Xu, Jun
    Li, Ganzuo
    Zhang, Gaoyong
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2006, 27 (08) : 1059 - 1063
  • [50] Effects of epigallocatechin gallate on β-casein adsorption at the air/water interface
    Sausse, P
    Aguié-Béghin, V
    Douillard, R
    LANGMUIR, 2003, 19 (03) : 737 - 743