Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis

被引:28
作者
Batchellor, Adam S. [2 ]
Kwon, Gihan [1 ]
Laskowski, Forrest A. L. [2 ]
Tiede, David M. [1 ]
Boettcher, Shannon W. [2 ]
机构
[1] Argonne Natl Lab, Adv Photon Source, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Univ Oregon, Dept Chem, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
LAYERED DOUBLE HYDROXIDE; ALKALINE WATER ELECTROLYSIS; NICKEL-HYDROXIDE; FE-SITES; OXIDE; OXIDATION; ELECTROCATALYSTS; ELECTRODES; EFFICIENT; MEDIA;
D O I
10.1021/acs.jpcc.7b10306
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni-Fe (oxy)hydroxides, Ni(i-z)FezOzHy, are among the fastest-known water oxidation catalysts in alkaline media on a per-cation basis. At current densities relevant for electrolysis (e.g., >0.5 A/cm(-2)), mass and electron transport through catalyst films with high mass loading are critical and depend substantially on the extended and intermediate catalyst architecture. Here we use X-ray pair distribution function (PDF) analysis to determine the intermediate nanostructures of electrodeposited Ni(i-z)FezOzHy films. We report the effects of electrodeposition technique (pulsed versus continuous), electrochemical cycling, and Fe content on the structure of the catalyst film. The PDF patterns for Ni(i-z)FezOzHy films are best simulated by model structures consisting of brucite-like beta-Ni(OH)(2) fragments 1 to 3 layers in thickness. Only the oxidation state of the film significantly affects the intralayer scattering behavior (i.e., metal-oxygen bond distance). The interlayer interactions, however, are affected by Fe content and deposition conditions. The domain size of many of the systems are similar, extending to similar to 5 nm, which are best modeled by sheets containing upward of similar to 250 metal cations. Smaller domains were found for films deposited through a larger number of electrochemical cathodic current pulses. Films can be cycled between as-deposited, oxidized, and reduced states, with minimal loss of intrasheet coherence, indicating a degree of structural stability. We estimate heterogeneity in the domain structures by modeling the PDF data to linear combinations of oxyhydroxide fragments with different sizes and numbers of layers.
引用
收藏
页码:25421 / 25429
页数:9
相关论文
共 71 条
[21]   Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst [J].
Farrow, Christopher L. ;
Bediako, D. Kwabena ;
Surendranath, Yogesh ;
Nocera, Daniel G. ;
Billinge, Simon J. L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (17) :6403-6406
[22]   Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting [J].
Fominykh, Ksenia ;
Chernev, Petko ;
Zaharieva, Ivelina ;
Sicklinger, Johannes ;
Stefanic, Goran ;
Doeblinger, Markus ;
Mueller, Alexander ;
Pokharel, Aneil ;
Boecklein, Sebastian ;
Scheu, Christina ;
Bein, Thomas ;
Fattakhova-Rohlfing, Dina .
ACS NANO, 2015, 9 (05) :5180-5188
[23]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313
[24]   Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses [J].
Frydendal, Rasmus ;
Paoli, Elisa A. ;
Knudsen, Brian P. ;
Wickman, Bjorn ;
Malacrida, Paolo ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
CHEMELECTROCHEM, 2014, 1 (12) :2075-2081
[25]   Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst [J].
Gao, Minrui ;
Sheng, Wenchao ;
Zhuang, Zhongbin ;
Fang, Qianrong ;
Gu, Shuang ;
Jiang, Jun ;
Yan, Yushan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) :7077-7084
[26]   Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts [J].
Goerlin, Mikaela ;
Chernev, Petko ;
de Araujo, Jorge Ferreira ;
Reier, Tobias ;
Dresp, Soeren ;
Paul, Benjamin ;
Kraehnert, Ralph ;
Dau, Holger ;
Strasser, Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (17) :5603-5614
[27]   An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation [J].
Gong, Ming ;
Li, Yanguang ;
Wang, Hailiang ;
Liang, Yongye ;
Wu, Justin Z. ;
Zhou, Jigang ;
Wang, Jian ;
Regier, Tom ;
Wei, Fei ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (23) :8452-8455
[28]   Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design [J].
Haber, Joel A. ;
Anzenburg, Eitan ;
Yano, Junko ;
Kisielowski, Christian ;
Gregoire, John M. .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)
[29]   ALKALINE WATER ELECTROLYSIS ANODE MATERIALS [J].
HALL, DE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (02) :C41-C48
[30]   Domain structure for an amorphous iridium-oxide water-oxidation catalyst characterized by X-ray pair distribution function analysis [J].
Huang, Jier ;
Blakemore, James D. ;
Fazi, Diego ;
Kokhan, Oleksandr ;
Schley, Nathan D. ;
Crabtree, Robert H. ;
Brudvig, Gary W. ;
Tiede, David M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (05) :1814-1819