Domain Structures of Ni and NiFe (Oxy)Hydroxide Oxygen-Evolution Catalysts from X-ray Pair Distribution Function Analysis

被引:28
作者
Batchellor, Adam S. [2 ]
Kwon, Gihan [1 ]
Laskowski, Forrest A. L. [2 ]
Tiede, David M. [1 ]
Boettcher, Shannon W. [2 ]
机构
[1] Argonne Natl Lab, Adv Photon Source, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Univ Oregon, Dept Chem, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
LAYERED DOUBLE HYDROXIDE; ALKALINE WATER ELECTROLYSIS; NICKEL-HYDROXIDE; FE-SITES; OXIDE; OXIDATION; ELECTROCATALYSTS; ELECTRODES; EFFICIENT; MEDIA;
D O I
10.1021/acs.jpcc.7b10306
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ni-Fe (oxy)hydroxides, Ni(i-z)FezOzHy, are among the fastest-known water oxidation catalysts in alkaline media on a per-cation basis. At current densities relevant for electrolysis (e.g., >0.5 A/cm(-2)), mass and electron transport through catalyst films with high mass loading are critical and depend substantially on the extended and intermediate catalyst architecture. Here we use X-ray pair distribution function (PDF) analysis to determine the intermediate nanostructures of electrodeposited Ni(i-z)FezOzHy films. We report the effects of electrodeposition technique (pulsed versus continuous), electrochemical cycling, and Fe content on the structure of the catalyst film. The PDF patterns for Ni(i-z)FezOzHy films are best simulated by model structures consisting of brucite-like beta-Ni(OH)(2) fragments 1 to 3 layers in thickness. Only the oxidation state of the film significantly affects the intralayer scattering behavior (i.e., metal-oxygen bond distance). The interlayer interactions, however, are affected by Fe content and deposition conditions. The domain size of many of the systems are similar, extending to similar to 5 nm, which are best modeled by sheets containing upward of similar to 250 metal cations. Smaller domains were found for films deposited through a larger number of electrochemical cathodic current pulses. Films can be cycled between as-deposited, oxidized, and reduced states, with minimal loss of intrasheet coherence, indicating a degree of structural stability. We estimate heterogeneity in the domain structures by modeling the PDF data to linear combinations of oxyhydroxide fragments with different sizes and numbers of layers.
引用
收藏
页码:25421 / 25429
页数:9
相关论文
共 71 条
  • [1] Electrochemically induced surface modifications of mesoporous spinets (Co3O4-δ, MnCo2O4-δ, NiCo2O4-δ) as the origin of the OER activity and stability in alkaline medium
    Abidat, I.
    Bouchenafa-Saib, N.
    Habrioux, A.
    Comminges, C.
    Canaff, C.
    Rousseau, J.
    Napporn, T. W.
    Dambournet, D.
    Borkiewicz, O.
    Kokoh, K. B.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (33) : 17433 - 17444
  • [2] [Anonymous], 2010, AQUEOUS CHEM ELEMENT, DOI DOI 10.1093/OSO/9780195393354.001.0001
  • [3] Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water
    Bajdich, Michal
    Garcia-Mota, Monica
    Vojvodic, Aleksandra
    Norskov, Jens K.
    Bell, Alexis T.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) : 13521 - 13530
  • [4] Pulse-Electrodeposited Ni-Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts with High Geometric and Intrinsic Activities at Large Mass Loadings
    Batchellor, Adam S.
    Boettcher, Shannon W.
    [J]. ACS CATALYSIS, 2015, 5 (11): : 6680 - 6689
  • [5] Charge-Transfer Effects in Ni-Fe and Ni-Fe-Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction
    Bates, Michael K.
    Jia, Qingying
    Doan, Huong
    Liang, Wentao
    Mukerjee, Sanjeev
    [J]. ACS CATALYSIS, 2016, 6 (01): : 155 - 161
  • [6] Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst
    Bediako, D. Kwabena
    Lassalle-Kaiser, Benedikt
    Surendranath, Yogesh
    Yano, Junko
    Yachandra, Vittal K.
    Nocera, Daniel G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (15) : 6801 - 6809
  • [7] Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution
    Bergmann, Arno
    Martinez-Moreno, Elias
    Teschner, Detre
    Chernev, Petko
    Gliech, Manuel
    de Araujo, Jorge Ferreira
    Reier, Tobias
    Dau, Holger
    Strasser, Peter
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [8] Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions
    Billinge, SJL
    Kanatzidis, MG
    [J]. CHEMICAL COMMUNICATIONS, 2004, (07) : 749 - 760
  • [9] Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts
    Binninger, Tobias
    Mohamed, Rhiyaad
    Waltar, Kay
    Fabbri, Emiliana
    Levecque, Pieter
    Koetz, Ruediger
    Schmidt, Thomas J.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [10] Bode H., 1966, Electrochim. Acta, V11, P1079, DOI [10.1016/0013-4686(66)80045-2, DOI 10.1016/0013-4686(66)80045-2]