Boundary Stabilization and H∞ Control for Stochastic Reaction-Diffusion Systems

被引:0
|
作者
Pan, Pei-Liang [1 ]
Wang, Jian [2 ]
Wu, Kai-Ning [2 ]
机构
[1] Rizhao Highway Adm, Div Engn, Rizhao 276800, Peoples R China
[2] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
关键词
Stabilization; H-infinity control; stochastic reaction-diffusion; boundary control; GROSSBERG NEURAL-NETWORKS; TIME-VARYING DELAYS; OUTPUT-FEEDBACK CONTROL; UNSTABLE HEAT-EQUATION; EXPONENTIAL STABILITY; DISTRIBUTED DELAYS; SYNCHRONIZATION; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the problems of stabilization and H-infinity control for stochastic reaction-diffusion systems(SRDSs) via boundary control. The SRDSs with Neumann boundary condition is considered. Making use of the Lyapunov-Krasoviskii functional method and Ito formula, we obtain the sufficient condition guaranteeing the mean square asymptotical stability under the boundary control. When systems are affected by external disturbances, we investigate the H-infinity control. By utilizing a standard completion of squares argument, we derive the sufficient condition which guarantees the H-infinity performance. At last, we provide examples to illustrate the effectiveness of our results.
引用
收藏
页码:2279 / 2283
页数:5
相关论文
共 50 条
  • [41] Synchronization of stochastic reaction–diffusion systems via boundary control
    Kai-Ning Wu
    Jian Wang
    Cheng-Chew Lim
    Nonlinear Dynamics, 2018, 94 : 1763 - 1773
  • [42] Mittag-Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control *
    Li, Xing -Yu
    Wu, Kai-Ning
    Liu, Xiao-Zhen
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 449
  • [43] Constrained H∞ control for the reaction-diffusion systems with spatiotemporal uncertainty
    Zhong, Jiaqi
    Tan, Jiajia
    Yuan, Yupeng
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1668 - 1673
  • [44] Drift estimation for stochastic reaction-diffusion systems
    Pasemann, Gregor
    Stannat, Wilhelm
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 547 - 579
  • [45] Passivity-based boundary control for delay reaction-diffusion systems
    Wu, Kai-Ning
    Zhou, Wei-Jie
    Liu, Xiao-Zhen
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (09): : 4074 - 4096
  • [46] Stability of switched stochastic reaction-diffusion systems
    Li, Yixuan
    Ren, Yong
    INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (10) : 2464 - 2470
  • [47] Stability of reaction-diffusion systems with stochastic switching
    Pan, Lijun
    Cao, Jinde
    Alsaedi, Ahmed
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 315 - 331
  • [48] Finite-time boundary control for delay reaction-diffusion systems
    Wu, Kai-Ning
    Sun, Han-Xiao
    Yang, Baoqing
    Lim, Cheng-Chew
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 : 52 - 63
  • [49] DETERMINISTIC CONTROL OF STOCHASTIC REACTION-DIFFUSION EQUATIONS
    Stannat, Wilhelm
    Wessels, Lukas
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (04): : 701 - 722
  • [50] Boundary stabilization of random reaction-diffusion systemsBoundary stabilization of random reaction-diffusion systemsZ. Xue et al.
    Zhuo Xue
    Kai-Ning Wu
    Zhaojing Wu
    Yongxin Wu
    Nonlinear Dynamics, 2025, 113 (10) : 11867 - 11879