Targeting autotaxin impacts disease advance in the SOD1-G93A mouse model of amyotrophic lateral sclerosis

被引:4
|
作者
Gento-Caro, Angela [1 ]
Vilches-Herrando, Esther [1 ]
Portillo, Federico [1 ]
Gonzalez-Forero, David [1 ]
Moreno-Lopez, Bernardo [1 ]
机构
[1] Univ Cadiz, Grp NEuroDEgenerac & NeurorREparac GRUNEDERE, Fac Med, Inst Invest & Innovat Biomad Cadiz INiBICA,Area F, Plaza Falla 9, Cadiz 11003, Spain
关键词
amyotrophic lateral sclerosis; autotaxin; ENPP2; intrinsic membrane excitability; LPA(1); EDG2; motor neuron; neurodegeneration; SELECTIVE NEURONAL VULNERABILITY; LYSOPHOSPHATIDIC ACID; NEURODEGENERATIVE DISEASES; EXCITABILITY; HYPEREXCITABILITY;
D O I
10.1111/bpa.13022
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
A preclinical strategy to broaden the search of potentially effective treatments in amyotrophic lateral sclerosis (ALS) relies on identifying factors controlling motor neuron (MN) excitability. These partners might be part of still unknown pathogenic pathways and/or useful for the design of new interventions to affect disease progression. In this framework, the bioactive membrane-derived phospholipid lysophosphatidic acid (LPA) affects MN excitability through LPA receptor 1 (LPA(1)). Furthermore, LPA(1) knockdown is neuroprotective in transgenic ALS SOD1-G93A mice. On this basis, we raised the hypothesis that the major LPA-synthesizing ectoenzyme, autotaxin (ATX), regulates MN excitability and is a potential target to modulate disease development in ALS mice. We show here that PF-8380, a specific ATX inhibitor, reduced intrinsic membrane excitability (IME) of hypoglossal MNs in brainstem slices, supporting that baseline ATX activity regulates MN IME. PF-8380-induced alterations were prevented by a small-interfering RNA directed against mRNA for lpa(1). These outcomes support that impact of ATX-originated lysophospholipids on MN IME engages, at least, the G-protein-coupled receptor LPA(1). Interestingly, mRNA(atx) levels increased in the spinal cord of pre-symptomatic (1-2 months old) SOD1-G93A mice, thus preceding MN loss. The rise in transcripts levels also occurred in cultured spinal cord MNs from SOD1-G93A embryos, suggesting that mRNA(atx) upregulation in MNs is an etiopathogenic event in the ALS cell model. Remarkably, chronic administration in the drinking water of the orally bioavailable ATX inhibitor PF-8380 delayed MN loss, motor deterioration and prolonged life span in ALS mice. Treatment also led to a reduction in LPA(1)-immunoreactive patches in transgenic animals mostly in MNs. These outcomes support that neuroprotective effects of interfering with ATX in SOD1-G93A mice rely, at least in part, on LPA(1) knockdown in MNs. Therefore, we propose ATX as a potential target and/or a biomarker in ALS and highlight ATX inhibitors as reasonable tools with therapeutic usefulness for this lethal pathology.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Yan-Su Guo
    Dong-Xia Wu
    Hong-Ran Wu
    Shu-Yu Wu
    Cheng Yang
    Bin Li
    Hui Bu
    Yue-sheng Zhang
    Chun-Yan Li
    Experimental & Molecular Medicine, 2009, 41 : 140 - 150
  • [2] Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Guo, Yan-Su
    Wu, Dong-Xia
    Wu, Hong-Ran
    Wu, Shu-Yu
    Yang, Cheng
    Li, Bin
    Bu, Hui
    Zhang, Yue-sheng
    Li, Chun-Yan
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2009, 41 (03): : 140 - 150
  • [3] Role of CDNF in SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Voutilainen, M. H.
    De Lorenzo, F.
    Montonen, E.
    Tuominen, R. K.
    Lindholm, D.
    Sendtner, M.
    Saarma, M.
    CELL TRANSPLANTATION, 2018, 27 (04) : 717 - 718
  • [4] Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1-G93A mouse model
    Zhang, Jing-Jing
    Zhou, Qin-Ming
    Chen, Sheng
    Le, Wei-Dong
    CNS NEUROSCIENCE & THERAPEUTICS, 2018, 24 (12) : 1163 - 1174
  • [5] Neuroprotective Effects of Genistein in a SOD1-G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
    Zhao, Zichun
    Fu, Jinsheng
    Li, Shiping
    Li, Zhenzhong
    JOURNAL OF NEUROIMMUNE PHARMACOLOGY, 2019, 14 (04) : 688 - 696
  • [6] Blood pressure measurements in a transgenic SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Kandinov, Boris
    Drory, Vivian E.
    Tordjman, Karen
    Korczyn, Amos D.
    AMYOTROPHIC LATERAL SCLEROSIS, 2012, 13 (06): : 509 - 513
  • [7] Neuroprotective Effects of Genistein in a SOD1-G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
    Zichun Zhao
    Jinsheng Fu
    Shiping Li
    Zhenzhong Li
    Journal of Neuroimmune Pharmacology, 2019, 14 : 688 - 696
  • [8] Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis
    Guo, Yansu
    Zhang, Kunxi
    Wang, Qian
    Li, Zhongyao
    Yin, Yunxia
    Xu, Qingmei
    Duan, Weisong
    Li, Chunyan
    BRAIN RESEARCH, 2011, 1374 : 110 - 115
  • [9] Immunohistochemical analysis of sympathetic involvement in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis
    Kandinov, Boris
    Grigoriadis, Nikolaos C.
    Touloumi, Olga
    Drory, Vivian E.
    Offen, Daniel
    Korczyn, Amos D.
    AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2013, 14 (5-6) : 424 - 433
  • [10] Effect of genetic background on onset and disease progression in the SOD1-G93A model of amyotrophic lateral sclerosis
    Mancuso, Renzo
    Olivan, Sara
    Mancera, Pilar
    Pasten-Zamorano, Andrea
    Manzano, Raquel
    Casas, Caty
    Osta, Rosario
    Navarro, Xavier
    AMYOTROPHIC LATERAL SCLEROSIS, 2012, 13 (03): : 302 - 310