A tool to automatically analyze electromagnetic tracking data from high dose rate brachytherapy of breast cancer patients

被引:11
作者
Goetz, Th. I. [1 ,2 ,4 ]
Lahmer, G. [2 ]
Strnad, V. [2 ]
Bert, Ch. [2 ]
Hensel, B. [4 ]
Tome, A. M. [3 ]
Lang, E. W. [1 ]
机构
[1] Univ Regensburg, CIML, Biophys, D-93040 Regensburg, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Univ Klinikum Erlangen, Dept Radiat Oncol, D-91054 Erlangen, Germany
[3] Univ Aveiro, DETI, IEETA, P-3810193 Aveiro, Portugal
[4] Univ Erlangen Nurnberg, Ctr Med Phys & Engn, D-91052 Erlangen, Germany
来源
PLOS ONE | 2017年 / 12卷 / 09期
关键词
EMPIRICAL MODE DECOMPOSITION; SINGULAR-SPECTRUM ANALYSIS; INTERSTITIAL BRACHYTHERAPY; SIMULTANEOUS LOCALIZATION; MUTUAL-INFORMATION; TIME-SERIES; DYNAMICS; IRRADIATION; PEARSONS; PROSTATE;
D O I
10.1371/journal.pone.0183608
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During High Dose Rate Brachytherapy (HDR-BT) the spatial position of the radiation source inside catheters implanted into a female breast is determined via electromagnetic tracking (EMT). Dwell positions and dwell times of the radiation source are established, relative to the patient's anatomy, from an initial X-ray-CT-image. During the irradiation treatment, catheter displacements can occur due to patient movements. The current study develops an automatic analysis tool of EMT data sets recorded with a solenoid sensor to assure concordance of the source movement with the treatment plan. The tool combines machine learning techniques such as multi-dimensional scaling (MDS), ensemble empirical mode decomposition (EEMD), singular spectrum analysis (SSA) and particle filter (PF) to precisely detect and quantify any mismatch between the treatment plan and actual EMT measurements. We demonstrate that movement artifacts as well as technical signal distortions can be removed automatically and reliably, resulting in artifact-free reconstructed signals. This is a prerequisite for a highly accurate determination of any deviations of dwell positions from the treatment plan.
引用
收藏
页数:31
相关论文
共 58 条
  • [1] Abdi H., 2007, METRIC MULTIDIMENSIO
  • [2] EMDLAB: A toolbox for analysis of single-trial EEG dynamics using empirical mode decomposition
    Al-Subari, K.
    Al-Baddai, S.
    Tome, A. M.
    Goldhacker, M.
    Faltermeier, R.
    Lang, E. W.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2015, 253 : 193 - 205
  • [3] Ensemble Empirical Mode Decomposition Analysis of EEG Data Collected during a Contour Integration Task
    Al-Subari, Karema
    Al-Baddai, Saad
    Tome, Ana Maria
    Volberg, Gregor
    Hammwoehner, Rainer
    Lang, Elmar W.
    [J]. PLOS ONE, 2015, 10 (04):
  • [4] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [5] [Anonymous], 2017, MULT SCAL APPL EL TR
  • [6] [Anonymous], 1994, Multidimensional Scaling
  • [7] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [8] Simultaneous localization and mapping (SLAM): Part II
    Bailey, Tim
    Durrant-Whyte, Hugh
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (03) : 108 - 117
  • [9] Balachandran R, 2009, P SPIE MED IM VIS IM
  • [10] Electromagnetic tracking for treatment verification in interstitial brachytherapy
    Bert, Christoph
    Kellermeier, Markus
    Tanderup, Kari
    [J]. JOURNAL OF CONTEMPORARY BRACHYTHERAPY, 2016, 8 (05) : 448 - 453