Methods for reliable topology changes for perimeter-regularized geometric inverse problems

被引:5
作者
Hackl, Benjamin [1 ]
机构
[1] Inst Math Competence Ctr, A-4040 Linz, Austria
关键词
geometric inverse problems; perimeter regularization; topological derivatives; level set methods;
D O I
10.1137/060652208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the incorporation of topological derivativelike expansions into level set methods for perimeter-regularized geometric inverse problems. The expansions are done up to the second order with respect to the Lebesgue measure of the symmetric difference. They provide simpler shape functionals, still including the perimeter, and therefore allow the construction of steepest descent- and Newton-type algorithms to force topology changes during the level set evolution. Numerous numerical examples are provided that show the strong and also the weak points of the newly developed algorithms.
引用
收藏
页码:2201 / 2227
页数:27
相关论文
共 47 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]  
Allaire G, 2005, CONTROL CYBERN, V34, P59
[3]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[4]   A level-set method for shape optimization [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (12) :1125-1130
[5]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[6]  
Amstutz S, 2005, CONTROL CYBERN, V34, P81
[7]  
AMSTUTZ S, TOPOLOGICAL SENSITIV
[8]  
AMSTUTZ S, 2006, J COMPUT PHYS, V49, P87
[9]   A new algorithm for topology optimization using a level-set method [J].
Amstutz, Samuel ;
Andrae, Heiko .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 216 (02) :573-588
[10]   Level set methods for geometric inverse problems in linear elasticity [J].
Ben Ameur, H ;
Burger, M ;
Hackl, B .
INVERSE PROBLEMS, 2004, 20 (03) :673-696