Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy

被引:31
|
作者
Wang, Deyun [1 ,2 ]
Yue, Chenqiang [3 ]
ElAmraoui, Adnen [4 ]
机构
[1] China Univ Geosci, Mineral Resource Strategy & Policy Res Ctr, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Econ & Management, Wuhan 430074, Peoples R China
[3] Univ Liverpool, Sch Management, Liverpool L69 7ZH, Merseyside, England
[4] Artois Univ, Lab Genie Informat & Automat Artois LGI2A, UR 3926, F-62400 Bethune, France
关键词
Electricity load; Multi-step-ahead forecasting; Error correction strategy; Time series decomposition; Hybrid forecasting model; EMPIRICAL MODE DECOMPOSITION; SUPPORT VECTOR REGRESSION; WAVELET NEURAL-NETWORK; SVR MODEL; DEMAND; OPTIMIZATION; CONSUMPTION; PREDICTION;
D O I
10.1016/j.chaos.2021.111453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, a novel architecture combining a hybrid learning paradigm and an error correction strategy is presented for multi-step-ahead electricity load forecasting. The detail of the proposed architecture is provided as follows: (1) a novel hybrid learning paradigm based on complementary ensemble empirical mode decomposition (CEEMD) and backpropagation (BP) neural network improved by particle swarm optimization (PSO-BP) is developed for preliminary prediction of the electricity load; (2) an error prediction approach based on variational mode decomposition (VMD) and PSO-BP is established for prediction of the subsequent error; (3) calibrate the preliminary prediction values using the forecast results of the error prediction model. Specifically, in the error correction process, the original data series is separated into three subsets to generate a reasonable historical error series used for establishing the error prediction model. Two case studies based on the data of PJM and Ontario electricity markets are presented and investigated to assess the effectiveness of the proposed architecture. The evaluation results demonstrate that the proposed architecture can yield results in higher accuracy than other benchmark models considered in this study. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] PM2.5 Prediction with a Novel Multi-Step-Ahead Forecasting Model Based on Dynamic Wind Field Distance
    Yang, Mei
    Fan, Hong
    Zhao, Kang
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (22)
  • [32] Big multi-step ship motion forecasting using a novel hybrid model based on real-time decomposition, boosting algorithm and error correction framework
    Wei, Yunyu
    Chen, Zezong
    Zhao, Chen
    Chen, Xi
    Tu, Yuanhui
    Zhang, Chunyang
    OCEAN ENGINEERING, 2022, 256
  • [33] A novel ensemble electricity load forecasting system based on a decomposition-selection-optimization strategy
    Wang, Ying
    Li, Hongmin
    Jahanger, Atif
    Li, Qiwei
    Wang, Biao
    Balsalobre-Lorente, Daniel
    ENERGY, 2024, 312
  • [34] Short-term electrical load forecasting based on error correction using dynamic mode decomposition
    Kong, Xiangyu
    Li, Chuang
    Wang, Chengshan
    Zhang, Yusen
    Zhang, Jian
    APPLIED ENERGY, 2020, 261 (261)
  • [35] Forecasting multi-step-ahead reservoir monthly and daily inflow using machine learning models based on different scenarios
    Ibrahim, Karim Sherif Mostafa Hassan
    Huang, Yuk Feng
    Ahmed, Ali Najah
    Koo, Chai Hoon
    El-Shafie, Ahmed
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10893 - 10916
  • [36] Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms
    Xue, Puning
    Jiang, Yi
    Zhou, Zhigang
    Chen, Xin
    Fang, Xiumu
    Liu, Jing
    ENERGY, 2019, 188
  • [37] An Empirical Mode Decomposition-Based Hybrid Model for Sub-Hourly Load Forecasting
    Yin, Chuang
    Wei, Nan
    Wu, Jinghang
    Ruan, Chuhong
    Luo, Xi
    Zeng, Fanhua
    ENERGIES, 2024, 17 (02)
  • [38] Decomposition-Based Multi-Step Forecasting Model for the Environmental Variables of Rabbit Houses
    Ji, Ronghua
    Shi, Shanyi
    Liu, Zhongying
    Wu, Zhonghong
    ANIMALS, 2023, 13 (03):
  • [39] Multi-step-ahead stock price index forecasting using long short-term memory model with multivariate empirical mode decomposition
    Deng, Changrui
    Huang, Yanmei
    Hasan, Najmul
    Bao, Yukun
    INFORMATION SCIENCES, 2022, 607 : 297 - 321
  • [40] Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
    Wang, Deyun
    Luo, Hongyuan
    Grunder, Olivier
    Lin, Yanbing
    Guo, Haixiang
    APPLIED ENERGY, 2017, 190 : 390 - 407