Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy

被引:31
|
作者
Wang, Deyun [1 ,2 ]
Yue, Chenqiang [3 ]
ElAmraoui, Adnen [4 ]
机构
[1] China Univ Geosci, Mineral Resource Strategy & Policy Res Ctr, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Econ & Management, Wuhan 430074, Peoples R China
[3] Univ Liverpool, Sch Management, Liverpool L69 7ZH, Merseyside, England
[4] Artois Univ, Lab Genie Informat & Automat Artois LGI2A, UR 3926, F-62400 Bethune, France
关键词
Electricity load; Multi-step-ahead forecasting; Error correction strategy; Time series decomposition; Hybrid forecasting model; EMPIRICAL MODE DECOMPOSITION; SUPPORT VECTOR REGRESSION; WAVELET NEURAL-NETWORK; SVR MODEL; DEMAND; OPTIMIZATION; CONSUMPTION; PREDICTION;
D O I
10.1016/j.chaos.2021.111453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, a novel architecture combining a hybrid learning paradigm and an error correction strategy is presented for multi-step-ahead electricity load forecasting. The detail of the proposed architecture is provided as follows: (1) a novel hybrid learning paradigm based on complementary ensemble empirical mode decomposition (CEEMD) and backpropagation (BP) neural network improved by particle swarm optimization (PSO-BP) is developed for preliminary prediction of the electricity load; (2) an error prediction approach based on variational mode decomposition (VMD) and PSO-BP is established for prediction of the subsequent error; (3) calibrate the preliminary prediction values using the forecast results of the error prediction model. Specifically, in the error correction process, the original data series is separated into three subsets to generate a reasonable historical error series used for establishing the error prediction model. Two case studies based on the data of PJM and Ontario electricity markets are presented and investigated to assess the effectiveness of the proposed architecture. The evaluation results demonstrate that the proposed architecture can yield results in higher accuracy than other benchmark models considered in this study. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks
    Li, Dan
    Jiang, Fuxin
    Chen, Min
    Qian, Tao
    ENERGY, 2022, 238
  • [2] Multi-Step-Ahead Time Series Forecasting using Deep Learning and Fuzzy Time Series-based Error Correction Method
    Bhanja, Samit
    Ghose, Banani
    Das, Abhishek
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2024, 30 (11) : 1569 - 1594
  • [3] Multi-step-ahead and interval carbon price forecasting using transformer-based hybrid model
    Wang, Yue
    Wang, Zhong
    Wang, Xiaoyi
    Kang, Xinyu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (42) : 95692 - 95719
  • [4] Multi-step-ahead and interval carbon price forecasting using transformer-based hybrid model
    Wang Yue
    Wang Zhong
    Wang Xiaoyi
    Kang Xinyu
    Environmental Science and Pollution Research, 2023, 30 : 95692 - 95719
  • [5] Ensemble learning using multivariate variational mode decomposition based on the Transformer for multi-step-ahead streamflow forecasting
    Fang, Jinjie
    Yang, Linshan
    Wen, Xiaohu
    Yu, Haijiao
    Li, Weide
    Adamowski, Jan F.
    Barzegar, Rahim
    JOURNAL OF HYDROLOGY, 2024, 636
  • [6] Multi-Step-Ahead Forecasting of Groundwater Level Using Model Ensemble Technique
    Nourani, Vahid
    Ghaneei, Parnian
    Sharghi, Elnaz
    PROCEEDINGS OF 7TH INTERNATIONAL CONFERENCE ON HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS (ICHSA 2022), 2022, 140 : 247 - 257
  • [7] Multi-step-ahead time series forecasting based on CEEMDAN decomposition and temporal convolutional networks
    Ha Binh Minh
    Nguyen Hoang An
    Nguyen Minh Tuan
    2022 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND ANALYTICS (ACOMPA), 2022, : 54 - 59
  • [8] Multi-Step-Ahead Stock Index Prediction Based on a Novel Hybrid Model
    Zhang, Chengzhao
    Shi, Weimei
    Tang, Huiyue
    Guo, Fanyong
    2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA, 2023, : 185 - 189
  • [9] A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement
    Wang, Yaqi
    Zhao, Xiaomeng
    Li, Zheng
    Zhu, Wenbo
    Gui, Renzhou
    ENERGY, 2024, 312
  • [10] Multi-step-ahead crude oil price forecasting using a hybrid grey wave model
    Chen, Yanhui
    Zhang, Chuan
    He, Kaijian
    Zheng, Aibing
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 501 : 98 - 110