Semantic Reasoning from Model-Agnostic Explanations

被引:3
|
作者
Perdih, Timen Stepisnik [1 ]
Lavrac, Nada [1 ,2 ]
Skrlj, Blaz [3 ]
机构
[1] Jozef Stefan Inst, Ljubljana, Slovenia
[2] Univ Nova Gorica, Nova Gorica, Slovenia
[3] Jozef Stefan Inst, Jozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
来源
2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021) | 2021年
关键词
model explanations; reasoning; generalization; SHAP; machine learning; explainable AI;
D O I
10.1109/SAMI50585.2021.9378668
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the wide adoption of black-box models, instance-based post hoc explanation tools, such as LIME and SHAP became increasingly popular. These tools produce explanations, pinpointing contributions of key features associated with a given prediction. However, the obtained explanations remain at the raw feature level and are not necessarily understandable by a human expert without extensive domain knowledge. We propose ReEx (Reasoning with Explanations), a method applicable to explanations generated by arbitrary instance-level explainers, such as SHAP. By using background knowledge in the form of on-tologies, ReEx generalizes instance explanations in a least general generalization-like manner. The resulting symbolic descriptions are specific for individual classes and offer generalizations based on the explainer's output. The derived semantic explanations are potentially more informative, as they describe the key attributes in the context of more general background knowledge, e.g., at the biological process level. We showcase ReEx's performance on nine biological data sets, showing that compact, semantic explanations can be obtained and are more informative than generic ontology mappings that link terms directly to feature names. ReEx is offered as a simple-to-use Python library and is compatible with tools such as SHAP and similar. To our knowledge, this is one of the first methods that directly couples semantic reasoning with contemporary model explanation methods.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 50 条
  • [1] Model-Agnostic Counterfactual Explanations in Credit Scoring
    Dastile, Xolani
    Celik, Turgay
    Vandierendonck, Hans
    IEEE ACCESS, 2022, 10 : 69543 - 69554
  • [2] Model-Agnostic Explanations for Decisions Using Minimal Patterns
    Asano, Kohei
    Chun, Jinhee
    Koike, Atsushi
    Tokuyama, Takeshi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 241 - 252
  • [3] MODEL-AGNOSTIC VISUAL EXPLANATIONS VIA APPROXIMATE BILINEAR MODELS
    Joukovsky, Boris
    Sammani, Fawaz
    Deligiannis, Nikos
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1770 - 1774
  • [4] Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems
    Zanon, Andre Levi
    Dutra da Rocha, Leonardo Chaves
    Manzato, Marcelo Garcia
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT II, XAI 2024, 2024, 2154 : 3 - 27
  • [5] Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases
    de Sousa, Iam Palatnik
    Bernardes Rebuzzi Vellasco, Marley Maria
    da Silva, Eduardo Costa
    SENSORS, 2019, 19 (13)
  • [6] MANE: Model-Agnostic Non-linear Explanations for Deep Learning Model
    Tian, Yue
    Liu, Guanjun
    2020 IEEE WORLD CONGRESS ON SERVICES (SERVICES), 2020, : 33 - 36
  • [7] Pixel-Based Clustering for Local Interpretable Model-Agnostic Explanations
    Qian, Junyan
    Wen, Tong
    Ling, Ming
    Du, Xiaofu
    Ding, Hao
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2025, 15 (03) : 257 - 277
  • [8] Interpretable heartbeat classification using local model-agnostic explanations on ECGs
    Neves, Ines
    Folgado, Duarte
    Santos, Sara
    Barandas, Marilia
    Campagner, Andrea
    Ronzio, Luca
    Cabitza, Federico
    Gamboa, Hugo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [9] Individualized help for at-risk students using model-agnostic and counterfactual explanations
    Smith, Bevan, I
    Chimedza, Charles
    Buhrmann, Jacoba H.
    EDUCATION AND INFORMATION TECHNOLOGIES, 2022, 27 (02) : 1539 - 1558
  • [10] A novel dataset and local interpretable model-agnostic explanations (LIME) for monkeypox prediction
    Sharma, Nonita
    Mohanty, Sachi Nandan
    Mahato, Shalini
    Pattanaik, Chinmaya Ranjan
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2023, 17 (04): : 1297 - 1308