Non parametric estimation of the structural expectation of a stochastic increasing function

被引:9
作者
Dupuy, J-F. [1 ]
Loubes, J-M. [2 ]
Maza, E. [3 ]
机构
[1] Univ La Rochelle, Lab Math Image & Applicat, F-17000 La Rochelle, France
[2] Univ Toulouse 3, Inst Math, UMR 5219, F-31062 Toulouse, France
[3] INP ENSAT, Lab Genom & Biotechnol Fruits, UMR 990, F-31326 Castanet Tolosan, France
关键词
Functional data analysis; Non parametric warping model; Structural expectation; Curve registration; MAXIMUM-LIKELIHOOD-ESTIMATION; CURVE REGISTRATION; SAMPLE;
D O I
10.1007/s11222-009-9152-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article introduces a non parametric warping model for functional data. When the outcome of an experiment is a sample of curves, data can be seen as realizations of a stochastic process, which takes into account the variations between the different observed curves. The aim of this work is to define a mean pattern which represents the main behaviour of the set of all the realizations. So, we define the structural expectation of the underlying stochastic function. Then, we provide empirical estimators of this structural expectation and of each individual warping function. Consistency and asymptotic normality for such estimators are proved.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 18 条
[1]  
Bigot J., 2005, ESAIM, V9, P143, DOI [10.1051/ps:2005007, DOI 10.1051/PS:2005007]
[2]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[3]  
BOUROCHE JM, 1980, ANAL DONNEES QUE SAI
[4]   Semi-parametric estimation of shifts [J].
Gamboa, Fabrice ;
Loubes, Jean-Michel ;
Maza, Elie .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :616-640
[5]   Nonparametric maximum likelihood estimation of the structural mean of a sample of curves [J].
Gervini, D ;
Gasser, T .
BIOMETRIKA, 2005, 92 (04) :801-820
[6]   STATISTICAL TOOLS TO ANALYZE DATA REPRESENTING A SAMPLE OF CURVES [J].
KNEIP, A ;
GASSER, T .
ANNALS OF STATISTICS, 1992, 20 (03) :1266-1305
[7]   Curve registration by local regression [J].
Kneip, A ;
Li, X ;
MacGibbon, KB ;
Ramsay, JO .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (01) :19-29
[8]  
LEDOUX M, 1991, RESULTS MATH RELAT 3, V23
[9]   Functional convex averaging and synchronization for time-warped random curves [J].
Liu, XL ;
Müller, HG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :687-699
[10]   Road trafficking description and short term travel time forecasting, with a classification method [J].
Loubes, Jean-Michel ;
Maza, Elie ;
Lavielle, Marc ;
Rodriguez, Luis .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (03) :475-491