Finite dimensional global attractor for a fractional nonlinear Schrodinger equation

被引:17
作者
Goubet, Olivier [1 ]
Zahrouni, Ezzeddine [2 ]
机构
[1] CNRS, UMR 7352, UPJV, LAMFA, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Carthage, FSEG Nabeul, Nabeul 8000, Tunisia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2017年 / 24卷 / 05期
关键词
Nonlinear fractional Schrodinger equations; Global attractor; Fractal dimension;
D O I
10.1007/s00030-017-0482-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a weakly damped forced nonlinear fractional Schrodinger equation u(t) - i(-Delta)(alpha)u + i vertical bar u vertical bar(2)u + gamma u = f for a given alpha is an element of(1/2, 1) considered in the whole space R. We prove that this equation provides an infinite dimensional dynamical system in H (alpha) (R) that possesses a global attractor in H (alpha) (R) that is regular. We show also that if the external force is in a suitable weighted space then this global attractor has finite fractal dimension.
引用
收藏
页数:16
相关论文
共 24 条
[1]   Regularity of the attractor for a weakly damped nonlinear Schrodinger equation on R [J].
Akroune, N .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :45-48
[2]  
[Anonymous], 2002, Handbook of Dynamical Systems, P885
[3]  
[Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
[4]  
Ball JM, 2004, DISCRETE CONT DYN-A, V10, P31
[5]  
Caffarelli L., ARXIV160405665
[6]  
Calgaro C., M2AS IN PRESS
[7]   The attractor of the dissipative coupled fractional Schrodinger equations [J].
Cheng, Ming .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (05) :645-656
[8]  
Chueshov I., 2014, J DYN DIFFER EQU, V16, P469
[9]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[10]  
GHIDAGLIA JM, 1988, ANN I H POINCARE-AN, V5, P365