Multilevel Subdivision Parameterization Scheme for Aerodynamic Shape Optimization

被引:19
作者
Masters, D. A. [1 ]
Taylor, N. J. [2 ,4 ]
Rendall, T. C. S. [1 ]
Allen, C. B. [3 ]
机构
[1] Univ Bristol, Dept Aerosp Engn, Bristol BS8 1TR, Avon, England
[2] MBDA UK Ltd, Bristol BS34 7QW, Avon, England
[3] Univ Bristol, Dept Aerosp Engn, Computat Aerodynam, Bristol BS8 1TR, Avon, England
[4] Aerodynam Tools & Methods, Z21,POB 5, Filton, England
基金
“创新英国”项目;
关键词
CFD-BASED OPTIMIZATION; RADIAL BASIS FUNCTIONS; DESIGN; PARAMETRIZATION; SURFACES;
D O I
10.2514/1.J055785
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Subdivision curves are defined as the limit of a recursive application of a subdivision rule to an initial set of control points. This intrinsically provides a hierarchical set of control polygons that can be used to provide surface control at varying levels of fidelity. This work presents a shape parameterization method based on this principle and investigates its application to aerodynamic optimization. The subdivision curves are used to construct a multilevel aerofoil parameterization that allows an optimization to be initialized with a small number of design variables, and then be periodically increased in resolution throughout. This brings the benefits of a low-fidelity optimization (high convergence rate, increased robustness, low-cost finite difference gradients) while still allowing the final results to be from a high-dimensional design space. In this work, the multilevel subdivision parameterization is tested on a variety of optimization problems and compared with a control group of single-level subdivision schemes. For all the optimization cases, the multilevel schemes provided robust and reliable results in contrast to the single-level methods that often experienced difficulties with large numbers of design variables. As a result of this, the multilevel methods exploited the high-dimensional design spaces better and consequently produced better overall results.
引用
收藏
页码:3288 / 3303
页数:16
相关论文
共 61 条
[41]  
Jameson A., 1988, Journal of Scientific Computing, V3, P233, DOI 10.1007/BF01061285
[42]  
Lee Christopher, 2015, 53rd AIAA Aerospace Sciences Meeting
[43]   Menger curvature and rectifiability [J].
Léger, JC .
ANNALS OF MATHEMATICS, 1999, 149 (03) :831-869
[44]   Multi-level gradient-based methods and parametrisation in aerodynamic shape design [J].
Martinelli, Massimiliano ;
Beux, Francois .
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2008, 17 (1-2) :169-197
[45]   Influence of Shape Parameterization on a Benchmark Aerodynamic Optimization Problem [J].
Masters, D. A. ;
Poole, D. J. ;
Taylor, N. J. ;
Rendall, T. C. S. ;
Allen, C. B. .
JOURNAL OF AIRCRAFT, 2017, 54 (06) :2242-2256
[46]   Geometric Comparison of Aerofoil Shape Parameterization Methods [J].
Masters, D. A. ;
Taylor, N. J. ;
Rendall, T. C. S. ;
Allen, C. B. ;
Poole, D. J. .
AIAA JOURNAL, 2017, 55 (05) :1575-1589
[47]  
Masters D.A., 2016, 54 AIAA AEROSPACE SC, P2016, DOI DOI 10.2514/6.2016-0559
[48]  
Meheut M., 53 AIAA AEROSPACE SC, DOI DOI 10.2514/6.2015-0263
[49]   CFD-based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation [J].
Morris, A. M. ;
Allen, C. B. ;
Rendall, T. C. S. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 58 (08) :827-860
[50]   Aerodynamic shape optimization of a modern transport wing using only planform variations [J].
Morris, A. M. ;
Allen, C. B. ;
Rendall, T. C. S. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2009, 223 (G6) :843-851