Diffraction of an atom laser in the Raman-Nath regime

被引:1
作者
Sarkar, Sumit [1 ]
Mangaonkar, Jay [1 ]
Vishwakarma, Chetan [1 ]
Rapol, Umakant D. [1 ,2 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Phys, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[2] Indian Inst Sci Educ & Res, Ctr Energy Sci, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
关键词
BOSE-EINSTEIN CONDENSATE; STANDING LIGHT WAVES; GRAVITATIONAL ACCELERATION; OUTPUT COUPLER; INTERFEROMETER; CONSTANT; GRAVITY;
D O I
10.1103/PhysRevA.98.043625
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An atom interferometer is a ubiquitous tool for measuring fundamental constants and inertial sensing. While it has been extremely useful in measuring inertial rotations, the fine-structure constant, gravity gradients, and local gravity, the measurement process lacks the ability to probe continuously due to its single-shot nature. In this work, we experimentally demonstrate the diffraction of an atom laser in the Raman-Nath regime, a key step towards the development of an atom-laser-based interferometer. The diffraction orders can be precisely controlled, and momenta up to +/- 18hk can be imparted to the atom laser. We form the "atom laser" by outcoupling a quasicontinuous beam of coherent atoms from a reservoir of Rb-87 Bose-Einstein condensate lasting up to 400 ms. This atom laser then interacts with a grating formed by a standing wave of far-detuned laser light. By controlling the interaction time, the strength of diffraction into various orders can be controlled. Such diffraction would allow for the construction of an atom-interferometer to probe changes in physical environments continuously up to a few hundred milliseconds.
引用
收藏
页数:5
相关论文
共 56 条
[11]   Hunting for topological dark matter with atomic clocks [J].
Derevianko, A. ;
Pospelov, M. .
NATURE PHYSICS, 2014, 10 (12) :933-936
[12]   Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry [J].
Dickerson, Susannah M. ;
Hogan, Jason M. ;
Sugarbaker, Alex ;
Johnson, David M. S. ;
Kasevich, Mark A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[13]   Atomic gravitational wave interferometric sensor [J].
Dimopoulos, Savas ;
Graham, Peter W. ;
Hogan, Jason M. ;
Kasevich, Mark A. ;
Rajendran, Surjeet .
PHYSICAL REVIEW D, 2008, 78 (12)
[14]   Continuous Cold-Atom Inertial Sensor with 1 nrad/ sec Rotation Stability [J].
Dutta, I. ;
Savoie, D. ;
Fang, B. ;
Venon, B. ;
Alzar, C. L. Garrido ;
Geiger, R. ;
Landragin, A. .
PHYSICAL REVIEW LETTERS, 2016, 116 (18)
[15]   MEASUREMENT OF THE ELECTRIC POLARIZABILITY OF SODIUM WITH AN ATOM INTERFEROMETER [J].
EKSTROM, CR ;
SCHMIEDMAYER, J ;
CHAPMAN, MS ;
HAMMOND, TD ;
PRITCHARD, DE .
PHYSICAL REVIEW A, 1995, 51 (05) :3883-3888
[16]   Realization of a Distributed Bragg Reflector for Propagating Guided Matter Waves [J].
Fabre, C. M. ;
Cheiney, P. ;
Gattobigio, G. L. ;
Vermersch, F. ;
Faure, S. ;
Mathevet, R. ;
Lahaye, T. ;
Guery-Odelin, D. .
PHYSICAL REVIEW LETTERS, 2011, 107 (23)
[17]   Metrology with Atom Interferometry : Inertial Sensors from Laboratory to Field Applications [J].
Fang, B. ;
Dutta, I. ;
Gillot, P. ;
Savoie, D. ;
Lautier, J. ;
Cheng, B. ;
Alzar, C. L. Garrido ;
Geiger, R. ;
Merlet, S. ;
Dos Santos, F. Pereira ;
Landragin, A. .
8TH SYMPOSIUM ON FREQUENCY STANDARDS AND METROLOGY 2015, 2016, 723
[18]   A compact, transportable, microchip-based system for high repetition rate production of Bose-Einstein condensates [J].
Farkas, Daniel M. ;
Hudek, Kai M. ;
Salim, Evan A. ;
Segal, Stephen R. ;
Squires, Matthew B. ;
Anderson, Dana Z. .
APPLIED PHYSICS LETTERS, 2010, 96 (09)
[19]   Atom interferometer measurement of the newtonian constant of gravity [J].
Fixler, J. B. ;
Foster, G. T. ;
McGuirk, J. M. ;
Kasevich, M. A. .
SCIENCE, 2007, 315 (5808) :74-77
[20]   Optically Guided Beam Splitter for Propagating Matter Waves [J].
Gattobigio, G. L. ;
Couvert, A. ;
Reinaudi, G. ;
Georgeot, B. ;
Guery-Odelin, D. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)