Robust estimation for moment condition models with data missing not at random

被引:7
作者
Li, Wei [1 ]
Yang, Shu [2 ]
Han, Peisong [3 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
关键词
Identification; Empirical likelihood; Missing not at random; Multiple robustness; Semiparametric maximum likelihood estimator; EMPIRICAL LIKELIHOOD; NONRESPONSE; CALIBRATION; INFERENCE;
D O I
10.1016/j.jspi.2020.01.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider estimation for parameters defined through moment conditions when data are missing not at random. The missingness mechanism cannot be determined from the data alone, and inference under missingness not at random may be sensitive to unverifiable assumptions about the missingness mechanism. To add protection against model misspecification, we posit multiple models for the response probability and propose a weighting estimator with calibrated weights. Assuming the conditional distribution of the outcome given covariates is correctly modeled, we show that if any one of the multiple models for the response probability is correctly specified, the proposed estimator is consistent for the true value. A simulation study confirms that our estimator has multiple robustness when the outcome data is missing not at random. The method is also applied to an application. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 31 条
[11]   A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data [J].
Kim, Jae Kwang ;
Yu, Cindy Long .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) :157-165
[12]  
Kott PS, 2017, J SURV STAT METHODOL, V5, P159, DOI 10.1093/jssam/smx003
[13]   PATTERN-MIXTURE MODELS FOR MULTIVARIATE INCOMPLETE DATA [J].
LITTLE, RJA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :125-134
[14]   On varieties of doubly robust estimators under missingness not at random with a shadow variable [J].
Miao, Wang ;
Tchetgen, Eric J. Tchetgen .
BIOMETRIKA, 2016, 103 (02) :475-482
[15]   Multiple robustness in factorized likelihood models [J].
Molina, J. ;
Rotnitzky, A. ;
Sued, M. ;
Robins, J. M. .
BIOMETRIKA, 2017, 104 (03) :561-581
[16]  
Newey W.K., 1994, Handbook of Econometrics, VIV, P2111, DOI DOI 10.1016/S1573-4412(05)80005-4
[17]   Estimation with survey data under nonignorable nonresponse or informative sampling [J].
Qin, J ;
Leung, D ;
Shao, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :193-200
[18]  
Robins JM., 2000, Statistical models in epidemiology, the environment, and clinical trials', P1, DOI DOI 10.1007/978-1-4612-1284-3_2
[19]  
Rotnitzky A, 1997, STAT MED, V16, P81, DOI 10.1002/(SICI)1097-0258(19970115)16:1<81::AID-SIM473>3.0.CO
[20]  
2-0