Hydration and conformational equilibria of simple hydrophobic and amphiphilic solutes

被引:36
作者
Ashbaugh, HS
Kaler, EW
Paulaitis, ME
机构
[1] Johns Hopkins Univ, Dept Chem Engn, Baltimore, MD 21218 USA
[2] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
[3] Univ Delaware, Ctr Mol & Engn Thermodynam, Newark, DE 19716 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1016/S0006-3495(98)77565-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution.
引用
收藏
页码:755 / 768
页数:14
相关论文
共 80 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids, DOI DOI 10.1093/OSO/9780198803195.001.0001
[2]   On the validity of electrostatic linear response in polar solvents [J].
Aqvist, J ;
Hansson, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (22) :9512-9521
[3]   Entropy of hydrophobic hydration: Extension to hydrophobic chains [J].
Ashbaugh, HS ;
Paulaitis, ME .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (05) :1900-1913
[4]   Effects of long-range electrostatic potential truncation on the free energy of ionic hydration [J].
Ashbaugh, HS ;
Wood, RH .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (19) :8135-8139
[5]  
ASHBAUGH HS, 1998, THESIS U DELAWARE NE
[6]   SOLVATION THERMODYNAMICS OF NONIONIC SOLUTES [J].
BENNAIM, A ;
MARCUS, Y .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04) :2016-2027
[7]   STANDARD THERMODYNAMICS OF TRANSFER - USES AND MISUSES [J].
BENNAIM, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (07) :792-803
[8]  
Berendsen H., 1981, INTERMOLECULAR FORCE, V331, P331, DOI [DOI 10.1007/978-94-015-7658-1_21, 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658]
[9]   Volumes and hydration warmth of ions [J].
Born, M .
ZEITSCHRIFT FUR PHYSIK, 1920, 1 :45-48
[10]   ANALYTICAL MOLECULAR-SURFACE CALCULATION [J].
CONNOLLY, ML .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1983, 16 (OCT) :548-558