Geometric deep learning of RNA structure

被引:230
|
作者
Townshend, Raphael J. L. [1 ]
Eismann, Stephan [1 ,2 ]
Watkins, Andrew M. [3 ]
Rangan, Ramya [3 ,4 ]
Karelina, Masha [1 ,4 ]
Das, Rhiju [3 ,5 ]
Dror, Ron O. [1 ,6 ,7 ,8 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[4] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[8] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
STRUCTURE PREDICTION; RIBOSWITCH; ACCURACY;
D O I
10.1126/science.abe5650
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA molecules adopt three-dimensional structures that are critical to their function and of interest in drug discovery. Few RNA structures are known, however, and predicting them computationally has proven challenging. We introduce a machine learning approach that enables identification of accurate structural models without assumptions about their defining characteristics, despite being trained with only 18 known RNA structures. The resulting scoring function, the Atomic Rotationally Equivariant Scorer (ARES), substantially outperforms previous methods and consistently produces the best results in community-wide blind RNA structure prediction challenges. By learning effectively even from a small amount of data, our approach overcomes a major limitation of standard deep neural networks. Because it uses only atomic coordinates as inputs and incorporates no RNA-specific information, this approach is applicable to diverse problems in structural biology, chemistry, materials science, and beyond.
引用
收藏
页码:1047 / +
页数:47
相关论文
共 50 条
  • [31] RNA independent fragment partition method based on deep learning for RNA secondary structure prediction
    Zhao, Qi
    Mao, Qian
    Zhao, Zheng
    Yuan, Wenxuan
    He, Qiang
    Sun, Qixuan
    Yao, Yudong
    Fan, Xiaoya
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [32] Identifying RNA-small Molecule Binding Sites Using Geometric Deep Learning with Language Models
    Zhu, Weimin
    Ding, Xiaohan
    Shen, Hong-Bin
    Pan, Xiaoyong
    JOURNAL OF MOLECULAR BIOLOGY, 2025, 437 (08)
  • [33] Predicting RNA sequence-structure likelihood via structure-aware deep learning
    Zhou, You
    Pedrielli, Giulia
    Zhang, Fei
    Wu, Teresa
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [34] Geometric deep learning and equivariant neural networks
    Jan E. Gerken
    Jimmy Aronsson
    Oscar Carlsson
    Hampus Linander
    Fredrik Ohlsson
    Christoffer Petersson
    Daniel Persson
    Artificial Intelligence Review, 2023, 56 : 14605 - 14662
  • [35] EXPLORING GEOMETRIC DEEP LEARNING FOR PRECIPITATION NOWCASTING
    Zhao, Shan
    Saha, Sudipan
    Xiong, Zhitong
    Boers, Niklas
    Zhu, Xiao Xiang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3760 - 3763
  • [36] Geometric Deep Learning for Design of Catalysts and Molecules
    R. Yu. Lukin
    R. A. Grigoriev
    Doklady Mathematics, 2022, 106 : S63 - S64
  • [37] Geometric deep learning: progress, applications and challenges
    Wenming Cao
    Canta Zheng
    Zhiyue Yan
    Weixin Xie
    Science China Information Sciences, 2022, 65
  • [38] Geometric Deep Learning for Design of Catalysts and Molecules
    Lukin, R. Yu.
    Grigoriev, R. A.
    DOKLADY MATHEMATICS, 2022, 106 (SUPPL 1) : S63 - S64
  • [39] Ensemble Geometric Deep Learning of Aqueous Solubility
    Ghahremanpour, Mohammad M.
    Saar, Anastasia
    Tirado-Rives, Julian
    Jorgensen, William L.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (23) : 7338 - 7349
  • [40] Geometric deep learning: progress, applications and challenges
    Wenming CAO
    Canta ZHENG
    Zhiyue YAN
    Weixin XIE
    Science China(Information Sciences), 2022, 65 (02) : 238 - 240