Geometric deep learning of RNA structure

被引:252
作者
Townshend, Raphael J. L. [1 ]
Eismann, Stephan [1 ,2 ]
Watkins, Andrew M. [3 ]
Rangan, Ramya [3 ,4 ]
Karelina, Masha [1 ,4 ]
Das, Rhiju [3 ,5 ]
Dror, Ron O. [1 ,6 ,7 ,8 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[4] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[8] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
STRUCTURE PREDICTION; RIBOSWITCH; ACCURACY;
D O I
10.1126/science.abe5650
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA molecules adopt three-dimensional structures that are critical to their function and of interest in drug discovery. Few RNA structures are known, however, and predicting them computationally has proven challenging. We introduce a machine learning approach that enables identification of accurate structural models without assumptions about their defining characteristics, despite being trained with only 18 known RNA structures. The resulting scoring function, the Atomic Rotationally Equivariant Scorer (ARES), substantially outperforms previous methods and consistently produces the best results in community-wide blind RNA structure prediction challenges. By learning effectively even from a small amount of data, our approach overcomes a major limitation of standard deep neural networks. Because it uses only atomic coordinates as inputs and incorporates no RNA-specific information, this approach is applicable to diverse problems in structural biology, chemistry, materials science, and beyond.
引用
收藏
页码:1047 / +
页数:47
相关论文
共 61 条
[11]  
Cohen TS, 2016, PR MACH LEARN RES, V48
[12]   Automated de novo prediction of native-like RNA tertiary structures [J].
Das, Rhiju ;
Baker, David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (37) :14664-14669
[13]  
Das R, 2010, NAT METHODS, V7, P291, DOI [10.1038/nmeth.1433, 10.1038/NMETH.1433]
[14]   CONTRAfold: RNA secondary structure prediction without physics-based models [J].
Do, Chuong B. ;
Woods, Daniel A. ;
Batzoglou, Serafim .
BIOINFORMATICS, 2006, 22 (14) :E90-E98
[15]  
DUCCi F, 2020, RNA, V26, P794
[16]   An integrated encyclopedia of DNA elements in the human genome [J].
Dunham, Ian ;
Kundaje, Anshul ;
Aldred, Shelley F. ;
Collins, Patrick J. ;
Davis, CarrieA. ;
Doyle, Francis ;
Epstein, Charles B. ;
Frietze, Seth ;
Harrow, Jennifer ;
Kaul, Rajinder ;
Khatun, Jainab ;
Lajoie, Bryan R. ;
Landt, Stephen G. ;
Lee, Bum-Kyu ;
Pauli, Florencia ;
Rosenbloom, Kate R. ;
Sabo, Peter ;
Safi, Alexias ;
Sanyal, Amartya ;
Shoresh, Noam ;
Simon, Jeremy M. ;
Song, Lingyun ;
Trinklein, Nathan D. ;
Altshuler, Robert C. ;
Birney, Ewan ;
Brown, James B. ;
Cheng, Chao ;
Djebali, Sarah ;
Dong, Xianjun ;
Dunham, Ian ;
Ernst, Jason ;
Furey, Terrence S. ;
Gerstein, Mark ;
Giardine, Belinda ;
Greven, Melissa ;
Hardison, Ross C. ;
Harris, Robert S. ;
Herrero, Javier ;
Hoffman, Michael M. ;
Iyer, Sowmya ;
Kellis, Manolis ;
Khatun, Jainab ;
Kheradpour, Pouya ;
Kundaje, Anshul ;
Lassmann, Timo ;
Li, Qunhua ;
Lin, Xinying ;
Marinov, Georgi K. ;
Merkel, Angelika ;
Mortazavi, Ali .
NATURE, 2012, 489 (7414) :57-74
[17]   Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes [J].
Eismann, Stephan ;
Townshend, Raphael J. L. ;
Thomas, Nathaniel ;
Jagota, Milind ;
Jing, Bowen ;
Dror, Ron O. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (05) :493-501
[18]  
Glorot X., 2010, PROC 13 INT C ARTIF, P249
[19]   Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit [J].
Hahnloser, RHR ;
Sarpeshkar, R ;
Mahowald, MA ;
Douglas, RJ ;
Seung, HS .
NATURE, 2000, 405 (6789) :947-951
[20]   Crystal structure of an adenovirus virus-associated RNA [J].
Hood, Iris V. ;
Gordon, Jackson M. ;
Bou-Nader, Charles ;
Henderson, Frances E. ;
Bahmanjah, Soheila ;
Zhang, Jinwei .
NATURE COMMUNICATIONS, 2019, 10 (1)