Geometric deep learning of RNA structure

被引:230
|
作者
Townshend, Raphael J. L. [1 ]
Eismann, Stephan [1 ,2 ]
Watkins, Andrew M. [3 ]
Rangan, Ramya [3 ,4 ]
Karelina, Masha [1 ,4 ]
Das, Rhiju [3 ,5 ]
Dror, Ron O. [1 ,6 ,7 ,8 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[4] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[8] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
STRUCTURE PREDICTION; RIBOSWITCH; ACCURACY;
D O I
10.1126/science.abe5650
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA molecules adopt three-dimensional structures that are critical to their function and of interest in drug discovery. Few RNA structures are known, however, and predicting them computationally has proven challenging. We introduce a machine learning approach that enables identification of accurate structural models without assumptions about their defining characteristics, despite being trained with only 18 known RNA structures. The resulting scoring function, the Atomic Rotationally Equivariant Scorer (ARES), substantially outperforms previous methods and consistently produces the best results in community-wide blind RNA structure prediction challenges. By learning effectively even from a small amount of data, our approach overcomes a major limitation of standard deep neural networks. Because it uses only atomic coordinates as inputs and incorporates no RNA-specific information, this approach is applicable to diverse problems in structural biology, chemistry, materials science, and beyond.
引用
收藏
页码:1047 / +
页数:47
相关论文
共 50 条
  • [1] Geometric deep learning of RNA structure (vol 373, pg 1047, 2021)
    Townshend, R. J. L.
    SCIENCE, 2023, 379 (6630)
  • [2] Geometric Deep Learning on Biomolecular Structure
    Townshend, Raphael
    Melo, Ligia
    Liu, David
    Dror, Ron O.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 290A - 290A
  • [3] Geometric deep learning of RNA structure (vol 379, eadg6616, 2023)
    Townshend, R. J. L.
    SCIENCE, 2023, 380 (6649) : 1022 - 1022
  • [4] Deep Learning in RNA Structure Studies
    Yu, Haopeng
    Qi, Yiman
    Ding, Yiliang
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [5] Deep learning for RNA structure prediction
    Wang, Jiuming
    Fan, Yimin
    Hong, Liang
    Hu, Zhihang
    Li, Yu
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2025, 91
  • [6] Geometric Deep Learning for Molecular Crystal Structure Prediction
    Kilgour, Michael
    Rogal, Jutta
    Tuckerman, Mark
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4743 - 4756
  • [7] Geometric Deep Learning for Structure-Based Ligand Design
    Powers, Alexander S.
    Yu, Helen H.
    Suriana, Patricia
    Koodli, Rohan V.
    Lu, Tianyu
    Paggi, Joseph M.
    Dror, Ron O.
    ACS CENTRAL SCIENCE, 2023, 9 (12) : 2257 - 2267
  • [8] EQUIBIND: Geometric Deep Learning for Drug Binding Structure Prediction
    Staerk, Hannes
    Ganea, Octavian-Eugen
    Pattanaik, Lagnajit
    Barzilay, Regina
    Jaakkola, Tommi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [9] Structure-based drug design with geometric deep learning
    Isert, Clemens
    Atz, Kenneth
    Schneider, Gisbert
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 79
  • [10] Geometric deep learning for the prediction of magnesium-binding sites in RNA structures
    Wang, Kang
    Yin, Zuode
    Sang, Chunjiang
    Xia, Wentao
    Wang, Yan
    Sun, Tingting
    Xu, Xiaojun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 262