Geometric deep learning of RNA structure

被引:230
作者
Townshend, Raphael J. L. [1 ]
Eismann, Stephan [1 ,2 ]
Watkins, Andrew M. [3 ]
Rangan, Ramya [3 ,4 ]
Karelina, Masha [1 ,4 ]
Das, Rhiju [3 ,5 ]
Dror, Ron O. [1 ,6 ,7 ,8 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[4] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Biol Struct, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[8] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
STRUCTURE PREDICTION; RIBOSWITCH; ACCURACY;
D O I
10.1126/science.abe5650
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA molecules adopt three-dimensional structures that are critical to their function and of interest in drug discovery. Few RNA structures are known, however, and predicting them computationally has proven challenging. We introduce a machine learning approach that enables identification of accurate structural models without assumptions about their defining characteristics, despite being trained with only 18 known RNA structures. The resulting scoring function, the Atomic Rotationally Equivariant Scorer (ARES), substantially outperforms previous methods and consistently produces the best results in community-wide blind RNA structure prediction challenges. By learning effectively even from a small amount of data, our approach overcomes a major limitation of standard deep neural networks. Because it uses only atomic coordinates as inputs and incorporates no RNA-specific information, this approach is applicable to diverse problems in structural biology, chemistry, materials science, and beyond.
引用
收藏
页码:1047 / +
页数:47
相关论文
共 61 条
  • [1] End-to-End Differentiable Learning of Protein Structure
    AlQuraishi, Mohammed
    [J]. CELL SYSTEMS, 2019, 8 (04) : 292 - +
  • [2] Anderson B., 2019, ADV NEURAL INFORM PR, P14537
  • [3] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [4] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [5] SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction
    Boniecki, Michal J.
    Lach, Grzegorz
    Dawson, Wayne K.
    Tomala, Konrad
    Lukasz, Pawel
    Soltysinski, Tomasz
    Rother, Kristian M.
    Bujnicki, Janusz M.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (07)
  • [6] All-atom knowledge-based potential for RNA structure prediction and assessment
    Capriotti, Emidio
    Norambuena, Tomas
    Marti-Renom, Marc A.
    Melo, Francisco
    [J]. BIOINFORMATICS, 2011, 27 (08) : 1086 - 1093
  • [7] The Noncoding RNA Revolution-Trashing Old Rules to Forge New Ones
    Cech, Thomas R.
    Steitz, Joan A.
    [J]. CELL, 2014, 157 (01) : 77 - 94
  • [8] PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta
    Chaudhury, Sidhartha
    Lyskov, Sergey
    Gray, Jeffrey J.
    [J]. BIOINFORMATICS, 2010, 26 (05) : 689 - 691
  • [9] Design of RNAs: comparing programs for inverse RNA folding
    Churkin, Alexander
    Retwitzer, Matan Drory
    Reinharz, Vladimir
    Ponty, Yann
    Waldispuhl, Jerome
    Barash, Danny
    [J]. BRIEFINGS IN BIOINFORMATICS, 2018, 19 (02) : 350 - 358
  • [10] Cohen TS, 2016, PR MACH LEARN RES, V48