Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer

被引:10
|
作者
Nguyen, Nhung H. [1 ,2 ]
Li, Muyuan [3 ,4 ,5 ,6 ]
Green, Alaina M. [1 ,2 ]
Alderete, C. Huerta [1 ,2 ]
Zhu, Yingyue [1 ,2 ]
Zhu, Daiwei [1 ,2 ]
Brown, Kenneth R. [3 ,4 ,5 ]
Linke, Norbert M. [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
[5] Duke Univ, Dept Phys, Durham, NC 27708 USA
[6] IBM TJ Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
来源
PHYSICAL REVIEW APPLIED | 2021年 / 16卷 / 02期
基金
美国国家科学基金会;
关键词
COMPUTATION;
D O I
10.1103/PhysRevApplied.16.024057
中图分类号
O59 [应用物理学];
学科分类号
摘要
Fault-tolerant quantum error correction (QEC) is crucial for unlocking the true power of quantum computers. QEC codes use multiple physical qubits to encode a logical qubit, which is protected against errors at the physical qubit level. Here, we use a trapped-ion system to experimentally prepare m-qubit Greenberger-Horne-Zeilinger states and sample the measurement results to construct m x m logical states of the [[m(2), 1, m]] Shor code, up to m = 7. The synthetic logical fidelity shows how deeper encoding can compensate for additional gate errors in state preparation for larger logical states. However, the optimal code size depends on the physical error rate and we find that m = 5 has the best performance in our system. We further realize the direct logical encoding of the [[9, 1, 3]] Shor code on nine qubits in a 13-ion chain for comparison, with 98.8(1)% and 98.5(1)% fidelity for state vertical bar +/->(L), respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Efficient quantum programming using EASE gates on a trapped-ion quantum computer
    Grzesiak, Nikodem
    Maksymov, Andrii
    Niroula, Pradeep
    Nam, Yunseong
    QUANTUM, 2022, 6
  • [22] Measurement-induced quantum phases realized in a trapped-ion quantum computer
    Noel, Crystal
    Niroula, Pradeep
    Zhu, Daiwei
    Risinger, Andrew
    Egan, Laird
    Biswas, Debopriyo
    Cetina, Marko
    Gorshkov, Alexey V.
    Gullans, Michael J.
    Huse, David A.
    Monroe, Christopher
    NATURE PHYSICS, 2022, 18 (07) : 760 - +
  • [23] Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer
    Alderete, C. Huerta
    Singh, Shivani
    Nhung H Nguyen
    Zhu, Daiwei
    Balu, Radhakrishnan
    Monroe, Christopher
    Chandrashekar, C. M.
    Linke, Norbert M.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [24] Quantum support vector machines for classification and regression on a trapped-ion quantum computer
    Suzuki, Teppei
    Hasebe, Takashi
    Miyazaki, Tsubasa
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [25] Encoding a qubit in a trapped-ion mechanical oscillator
    Fluhmann, C.
    Nguyen, T. L.
    Marinelli, M.
    Negnevitsky, V.
    Mehta, K.
    Home, J. P.
    NATURE, 2019, 566 (7745) : 513 - +
  • [26] Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
    Nikodem Grzesiak
    Reinhold Blümel
    Kenneth Wright
    Kristin M. Beck
    Neal C. Pisenti
    Ming Li
    Vandiver Chaplin
    Jason M. Amini
    Shantanu Debnath
    Jwo-Sy Chen
    Yunseong Nam
    Nature Communications, 11
  • [27] Encoding a qubit in a trapped-ion mechanical oscillator
    C. Flühmann
    T. L. Nguyen
    M. Marinelli
    V. Negnevitsky
    K. Mehta
    J. P. Home
    Nature, 2019, 566 : 513 - 517
  • [28] Demonstration of a trapped-ion atomic clock in space
    Burt, E. A.
    Prestage, J. D.
    Tjoelker, R. L.
    Enzer, D. G.
    Kuang, D.
    Murphy, D. W.
    Robison, D. E.
    Seubert, J. M.
    Wang, R. T.
    Ely, T. A.
    NATURE, 2021, 595 (7865) : 43 - +
  • [29] Quantum computer using a trapped-ion spin molecule and microwave radiation
    Mc Hugh, D
    Twamley, J
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [30] Simulation and randomized measurement of topological phase on a trapped-ion quantum computer
    Cheong Eung Ahn
    Gil Young Cho
    Journal of the Korean Physical Society, 2022, 81 : 258 - 266