Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer

被引:10
|
作者
Nguyen, Nhung H. [1 ,2 ]
Li, Muyuan [3 ,4 ,5 ,6 ]
Green, Alaina M. [1 ,2 ]
Alderete, C. Huerta [1 ,2 ]
Zhu, Yingyue [1 ,2 ]
Zhu, Daiwei [1 ,2 ]
Brown, Kenneth R. [3 ,4 ,5 ]
Linke, Norbert M. [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
[5] Duke Univ, Dept Phys, Durham, NC 27708 USA
[6] IBM TJ Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
来源
PHYSICAL REVIEW APPLIED | 2021年 / 16卷 / 02期
基金
美国国家科学基金会;
关键词
COMPUTATION;
D O I
10.1103/PhysRevApplied.16.024057
中图分类号
O59 [应用物理学];
学科分类号
摘要
Fault-tolerant quantum error correction (QEC) is crucial for unlocking the true power of quantum computers. QEC codes use multiple physical qubits to encode a logical qubit, which is protected against errors at the physical qubit level. Here, we use a trapped-ion system to experimentally prepare m-qubit Greenberger-Horne-Zeilinger states and sample the measurement results to construct m x m logical states of the [[m(2), 1, m]] Shor code, up to m = 7. The synthetic logical fidelity shows how deeper encoding can compensate for additional gate errors in state preparation for larger logical states. However, the optimal code size depends on the physical error rate and we find that m = 5 has the best performance in our system. We further realize the direct logical encoding of the [[9, 1, 3]] Shor code on nine qubits in a 13-ion chain for comparison, with 98.8(1)% and 98.5(1)% fidelity for state vertical bar +/->(L), respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Demonstration of the trapped-ion quantum CCD computer architecture
    J. M. Pino
    J. M. Dreiling
    C. Figgatt
    J. P. Gaebler
    S. A. Moses
    M. S. Allman
    C. H. Baldwin
    M. Foss-Feig
    D. Hayes
    K. Mayer
    C. Ryan-Anderson
    B. Neyenhuis
    Nature, 2021, 592 : 209 - 213
  • [2] Demonstration of the trapped-ion quantum CCD computer architecture
    Pino, J. M.
    Dreiling, J. M.
    Figgatt, C.
    Gaebler, J. P.
    Moses, S. A.
    Allman, M. S.
    Baldwin, C. H.
    Foss-Feig, M.
    Hayes, D.
    Mayer, K.
    Ryan-Anderson, C.
    Neyenhuis, B.
    NATURE, 2021, 592 (7853) : 209 - +
  • [3] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [4] Nuclear spin qubits in a trapped-ion quantum computer
    Feng, M.
    Xu, Y. Y.
    Zhou, F.
    Suter, D.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [5] Trapped-ion qutrit spin molecule quantum computer
    Mc Hugh, D
    Twamley, J
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [6] Benchmarking a trapped-ion quantum computer with 30 qubits
    Chen, Jwo-Sy
    Nielsen, Erik
    Ebert, Matthew
    Inlek, Volkan
    Wright, Kenneth
    Chaplin, Vandiver
    Maksymov, Andrii
    Paez, Eduardo
    Poudel, Amrit
    Maunz, Peter
    Gamble, John
    QUANTUM, 2024, 8
  • [7] Holographic dynamics simulations with a trapped-ion quantum computer
    Chertkov, Eli
    Bohnet, Justin
    Francois, David
    Gaebler, John
    Gresh, Dan
    Hankin, Aaron
    Lee, Kenny
    Hayes, David
    Neyenhuis, Brian
    Stutz, Russell
    Potter, Andrew C.
    Foss-Feig, Michael
    NATURE PHYSICS, 2022, 18 (09) : 1074 - +
  • [8] Holographic dynamics simulations with a trapped-ion quantum computer
    Eli Chertkov
    Justin Bohnet
    David Francois
    John Gaebler
    Dan Gresh
    Aaron Hankin
    Kenny Lee
    David Hayes
    Brian Neyenhuis
    Russell Stutz
    Andrew C. Potter
    Michael Foss-Feig
    Nature Physics, 2022, 18 : 1074 - 1079
  • [9] Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer
    Pradeep Niroula
    Ruslan Shaydulin
    Romina Yalovetzky
    Pierre Minssen
    Dylan Herman
    Shaohan Hu
    Marco Pistoia
    Scientific Reports, 12
  • [10] Programmable Quantum Simulations on a Trapped-Ion Quantum Computer with a Global Drive
    Shapira, Yotam
    Markov, Jovan
    Akerman, Nitzan
    Stern, Ady
    Ozeri, Roee
    PHYSICAL REVIEW LETTERS, 2025, 134 (01)