On the first Steklov-Dirichlet eigenvalue for eccentric annuli

被引:5
作者
Hong, Jiho [1 ]
Lim, Mikyoung [1 ]
Seo, Dong-Hwi [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Hanyang Univ, Res Inst Nat Sci, 222 Wangsimni Ro, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Steklov-Dirichlet eigenvalue; Eccentric annulus; Eigenvalue estimate; Bipolar coordinates; Finite section method; DOUBLY CONNECTED DOMAINS; ELECTRIC-FIELD CONCENTRATION; LAPLACIAN; INEQUALITIES;
D O I
10.1007/s10231-021-01137-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the first Steklov-Dirichlet eigenvalue on eccentric annuli. The main geometric parameter is the distance t between the centers of the inner and outer boundaries of an annulus. We first show the differentiability of the eigenvalue in t and obtain an integral expression for the derivative value in two and higher dimensions. We then derive an upper bound of the eigenvalue for each t, in two dimensions, by the variational formulation. We also obtain a lower bound of the eigenvalue, given a restriction that the two boundaries of the annulus are sufficiently close. The key point of the proof of the lower bound is in analyzing the limit behavior of an infinite series expansion of the first eigenfunction in bipolar coordinates. We also derive a relation between the first eigenvalue and a sequence of eigenvalues obtained by a finite section method. Based on this relation, we also perform numerical experiments that exhibit the monotonicity for two dimensions.
引用
收藏
页码:769 / 799
页数:31
相关论文
共 45 条
[1]   On a mixed Poincare-Steklov type spectral problem in a Lipschitz domain [J].
Agranovich, M. S. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2006, 13 (03) :239-244
[2]   Gradient estimates for solutions to the conductivity problem [J].
Ammari, H ;
Kang, HB ;
Lim, M .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :277-286
[3]   On two functionals con fiected to the Laplacian in a class of doubly connected domains in space-forms [J].
Anisa, MHC ;
Aithal, AR .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (01) :93-102
[4]  
[Anonymous], 2012, Springer Monographs in Mathematics
[5]  
Anoop T., ARXIV200913967
[6]   ON THE STRICT MONOTONICITY OF THE FIRST EIGENVALUE OF THE p-LAPLACIAN ON ANNULI [J].
Anoop, T., V ;
Bobkov, Vladimir ;
Sasi, Sarath .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) :7181-7199
[7]  
Arrieta JM, 2008, REV MAT IBEROAM, V24, P183
[8]  
Bandle C., 1980, Isoperimetric inequalities and applications
[9]  
Banuelos R., 2010, Operator Theory and Its Applications, V231, P19
[10]   Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach [J].
Bonder, Julian Fernandez ;
Groisman, Pablo ;
Rossi, Julio D. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (02) :341-358