Rapid Scale Wind Profiling With Autoregressive Modeling and L-Band Doppler Radar

被引:2
作者
Domps, Baptiste [1 ]
Marmain, Julien [1 ]
Guerin, Charles-Antoine [2 ]
机构
[1] Degreane Horizon, F-83390 Cuers, France
[2] Aix Marseille Univ, Univ Toulon, Mediterranean Inst Oceanog, CNRS,IRD, F-83041 Toulon, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Doppler effect; Atmospheric modeling; Doppler radar; Atmospheric measurements; Wind speed; Radar; Laser radar; Autoregressive (AR) model; L-band; maximum entropy method (MEM); radar wind profiler (RWP); IMPROVED MOMENT ESTIMATION; ORDER SELECTION; NETWORK; VELOCITY; SPECTRA; ECHOES;
D O I
10.1109/TGRS.2022.3207362
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Radar wind profilers (RWPs) are well-established instruments for the probing of the atmospheric boundary layer, with the immense advantage of long-range and all-weather operation capability. One of their main limitations, however, is a relatively long integration time compared with other instruments, such as lidars. In the context of L-band RWP, we show that the use of autoregressive (AR) modeling for the antenna signals combined with the maximum entropy method (MEM) allows for a correct estimation of radial wind velocity profiles even with very short time samples. A systematical analysis of performance is made with the help of synthetic data. These numerical results are further confirmed by an experimental dataset acquired near the landing runways of Paris Charles de Gaulle (CDG) Airport, France, and validated using a colocated optical lidar at the Aerological Station of Payerne, Payerne, Switzerland. It is found that the AR-MEM approach can successfully derive wind estimates using integration times as short as 2.5 s where the classical spectral approach can barely provide any measurement.
引用
收藏
页数:10
相关论文
共 64 条
  • [1] Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data
    Aitken, Matthew L.
    Banta, Robert M.
    Pichugina, Yelena L.
    Lundquist, Julie K.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (04) : 765 - 787
  • [2] Intermittent Clutter Suppression Method Based on Adaptive Harmonic Wavelet Transform for L-Band Radar Wind Profiler
    Allabakash, S.
    Lim, Sanghun
    Yasodha, P.
    Kim, Hyunjung
    Lee, Gyuwon
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 8546 - 8556
  • [3] [Anonymous], 1997, M2013 ITUR
  • [4] Barrett C.L., 2008, P 2008 ACM IEEE C SU, P1, DOI DOI 10.1109/SC.2008.5214892
  • [5] DATA-PROCESSING ALGORITHMS USED BY NOAAS WIND PROFILER DEMONSTRATION NETWORK
    BARTH, MF
    CHADWICK, RB
    VANDEKAMP, DW
    [J]. ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1994, 12 (06): : 518 - 528
  • [6] Burg JP., 1975, MAXIMUM ENTROPY SPEC
  • [7] DEVELOPMENTS IN UHF LOWER TROPOSPHERIC WIRED PROFILING AT NOAAS AERONOMY LABORATORY
    CARTER, DA
    GAGE, KS
    ECKLUND, WL
    ANGEVINE, WM
    JOHNSTON, PE
    RIDDLE, AC
    WILSON, J
    WILLIAMS, CR
    [J]. RADIO SCIENCE, 1995, 30 (04) : 977 - 1001
  • [8] Improving Operational Radar Rainfall Estimates Using Profiler Observations Over Complex Terrain in Northern California
    Chen, Haonan
    Cifelli, Robert
    White, Allen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1821 - 1832
  • [9] Claerbout J F., 1985, FUNDAMENTALS GEOPHYS
  • [10] Cohn SA, 2002, J APPL METEOROL, V41, P1277, DOI 10.1175/1520-0450(2002)041<1277:RWPRVA>2.0.CO