Dipole soliton solution for the homogeneous high-order nonlinear Schrodinger equation with cubic-quintic-septic non-Kerr terms

被引:35
作者
Azzouzi, F. [1 ,2 ]
Triki, H. [2 ]
Grelu, Ph. [3 ]
机构
[1] Souk Ahras Univ, Matter Sci Dept, Radiat & Matter Phys Lab, Souk Ahras 41000, Algeria
[2] BadjiMokhtar Univ, Dept Phys, Radiat Phys Lab, Annaba 23000, Algeria
[3] Univ Bourgogne, CNRS, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, F-21078 Dijon, France
关键词
Nonlinear Schrodinger equation; Ansatz solution; Soliton; Non-Kerr terms; DISPERSIVE DIELECTRIC FIBERS; WAVE SOLUTIONS; OPTICAL PULSES; TRANSMISSION;
D O I
10.1016/j.apm.2014.08.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a high-order nonlinear Schrodinger equation with third- and fourth-order dispersions, cubic-quintic-septic nonlinearities, self-steepening, and instantaneous Raman response. This equation models describes ultra-short optical pulse propagation in highly-nonlinear media. The ansatz solution of Choudhuri and Porsezian (in Ref. [16]) is adapted to investigate solutions composed of the product of bright and dark solitary waves. Parametric conditions for the existence of the derived soliton solutions are given and their stabilities are numerically discussed. These exact solutions provide insight into balance mechanisms between several high-order nonlinearities of different nature. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1300 / 1307
页数:8
相关论文
共 24 条
[1]  
Agrawal GP., 1989, Nonlinear fiber optics
[2]   Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation [J].
Azzouzi, F. ;
Triki, H. ;
Mezghiche, K. ;
El Akrmi, A. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1304-1307
[3]   Higher-Order Kerr Terms Allow Ionization-Free Filamentation in Gases [J].
Bejot, P. ;
Kasparian, J. ;
Henin, S. ;
Loriot, V. ;
Vieillard, T. ;
Hertz, E. ;
Faucher, O. ;
Lavorel, B. ;
Wolf, J. -P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[4]   Measurement of fifth- and seventh-order nonlinearities of glasses [J].
Chen, YF ;
Beckwitt, K ;
Wise, FW ;
Aitken, BG ;
Sanghera, JS ;
Aggarwal, ID .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (02) :347-352
[5]   Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrodinger equation [J].
Choudhuri, Amitava ;
Porsezian, K. .
PHYSICAL REVIEW A, 2012, 85 (03)
[6]   Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrodinger equation with non-Kerr terms [J].
Choudhuri, Amitava ;
Porsezian, K. .
OPTICS COMMUNICATIONS, 2012, 285 (03) :364-367
[7]   A NOVEL-APPROACH TO SOLVING THE NONLINEAR SCHRODINGER-EQUATION BY THE COUPLED AMPLITUDE-PHASE FORMULATION [J].
DU, M ;
CHAN, AK ;
CHUI, CK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1995, 31 (01) :177-182
[8]   Optical solitary waves in the higher order nonlinear Schrodinger equation [J].
Gedalin, M ;
Scott, TC ;
Band, YB .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :448-451
[9]  
Grelu P, 2012, NAT PHOTONICS, V6, P84, DOI [10.1038/NPHOTON.2011.345, 10.1038/nphoton.2011.345]
[10]   Dynamics of wave packets in the frame of third-order nonlinear Schrodinger equation [J].
Gromov, EM ;
Piskunova, LV ;
Tyutin, VV .
PHYSICS LETTERS A, 1999, 256 (2-3) :153-158