Winding Numbers, Unwinding Numbers, and the Lambert W Function

被引:1
作者
Beardon, A. F. [1 ]
机构
[1] Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
关键词
Unwinding number; Winding number; Lambert W function;
D O I
10.1007/s40315-021-00398-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The unwinding number of a complex number was introduced to process automatic computations involving complex numbers and multi-valued complex functions, and has been successfully applied to computations involving branches of the Lambert W function. In this partly expository notewe discuss the unwinding number from a purely topological perspective, and link it to the classical winding number of a curve in the complex plane. We also use the unwinding number to give a representation of the branches Wk of the Lambert W function as a line integral.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 8 条
  • [1] Ahlfors LV., 1979, COMPLEX ANAL
  • [2] Beardon, 1979, COMPLEX ANAL
  • [3] The Principal Branch of the Lambert W Function
    Beardon, A. F.
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2021, 21 (02) : 307 - 316
  • [4] Corless R. M., 1996, SIGSAM Bulletin, V30, P28, DOI 10.1145/235699.235705
  • [5] On the Lambert W function
    Corless, RM
    Gonnet, GH
    Hare, DEG
    Jeffrey, DJ
    Knuth, DE
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) : 329 - 359
  • [6] Jeffrey D.J., 1996, Math. Scientist, V21, P1
  • [7] Kalugin G.A., 2011, C. R. Math. Acad. Sci. Soc. R. Can., V33, P50
  • [8] Wright E.M., 1959, Proc. Roy. Soc. Edinburgh Sect. A, V65, P193