Stochastic variational principles for the collisional Vlasov-Maxwell and Vlasov-Poisson equations

被引:4
作者
Tyranowski, Tomasz M. [1 ,2 ]
机构
[1] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[2] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85748 Garching, Germany
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 477卷 / 2252期
关键词
stochastic variational principles; Vlasov-Maxwell equation; Vlasov-Poisson equation; collisions; Fokker-Planck equation; particle methods; FOKKER-PLANCK EQUATION; COULOMB COLLISIONS; BOLTZMANN SYSTEM; GLOBAL EXISTENCE; MODEL-REDUCTION; PLASMA; INTEGRATORS; FORMULATION; ALGORITHMS; SIMULATION;
D O I
10.1098/rspa.2021.0167
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we recast the collisional Vlasov-Maxwell and Vlasov-Poisson equations as systems of coupled stochastic and partial differential equations, and we derive stochastic variational principles which underlie such reformulations. We also propose a stochastic particle method for the collisional Vlasov-Maxwell equations and provide a variational characterization of it, which can be used as a basis for a further development of stochastic structure-preserving particle-in-cell integrators.
引用
收藏
页数:23
相关论文
共 110 条
  • [1] STRUCTURE PRESERVING MODEL REDUCTION OF PARAMETRIC HAMILTONIAN SYSTEMS
    Afkham, Babak Maboudi
    Hesthaven, Jan S.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06) : A2616 - A2644
  • [2] A COMPUTATIONAL INVESTIGATION OF THE RANDOM PARTICLE METHOD FOR NUMERICAL-SOLUTION OF THE KINETIC VLASOV-POISSON-FOKKER-PLANCK EQUATIONS
    ALLEN, EJ
    VICTORY, HD
    [J]. PHYSICA A, 1994, 209 (3-4): : 318 - 346
  • [3] [Anonymous], 2017, UNCERTAINTY QUANTIFI
  • [4] [Anonymous], 2007, STOCHASTIC VARIATION
  • [5] Stochastic Euler-Poincare reduction
    Arnaudon, Marc
    Chen, Xin
    Cruzeiro, Ana Bela
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [6] LANGEVIN EQUATION VERSUS KINETIC-EQUATION - SUBDIFFUSIVE BEHAVIOR OF CHARGED-PARTICLES IN A STOCHASTIC MAGNETIC-FIELD
    BALESCU, R
    WANG, HD
    MISGUICH, JH
    [J]. PHYSICS OF PLASMAS, 1994, 1 (12) : 3826 - 3842
  • [7] Vlasov simulations of electron-ion collision effects on damping of electron plasma waves
    Banks, J. W.
    Brunner, S.
    Berger, R. L.
    Tran, T. M.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (03)
  • [8] Birdsall C K., 2004, Plasma physics via computer simulation
  • [9] BISMUT JM, 1982, LECT NOTES MATH, V929, P1
  • [10] Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation
    Bobylev, AV
    Nanbu, K
    [J]. PHYSICAL REVIEW E, 2000, 61 (04) : 4576 - 4586