Gyrokinetic simulation of turbulence and transport in the SPARC tokamak

被引:15
作者
Howard, N. T. [1 ]
Rodriguez-Fernandez, P. [1 ]
Holland, C. [2 ]
Rice, J. E. [1 ]
Greenwald, M. [1 ]
Candy, J. [3 ]
Sciortino, F. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] POB 85608, San Diego, CA 92186 USA
关键词
ELECTRON-TEMPERATURE-GRADIENT;
D O I
10.1063/5.0047789
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The turbulence and transport expected in the SPARC tokamak Primary Reference Discharge (PRD) [P. Rodriguez-Fernandez et al., J. Plasma Phys. 86, 865860503 (2020)] have been investigated with the gyrokinetic code CGYRO [J. Candy et al., J. Comput. Phys. 324, 73-93 (2016)]. Linear and nonlinear simulations that focus on ion (k(theta)rho(s) < 1:0) and electron-scale (k(theta)rho(s) > 1:0) turbulence were used to probe the nature of the turbulence and the resulting transport in the fusion core. It is found that in the SPARC PRD, ion temperature gradient (ITG) turbulence is expected to dominate transport over most of the profile with some potential trapped electron mode impact in the near edge. Stiff turbulence is observed over a part of the plasma core such that SPARC's ion temperature profile will likely be pinned to just above the critical gradient for ITG. The role of electromagnetic turbulence, rotation, and electron-scale turbulence was investigated to provide some insight into the physics required to accurately predict SPARC performance via gyrokinetics. Additionally, predictions of impurity peaking for potential low- and high-Z SPARC first-wall materials are probed using ion-scale simulation. The dominance of low-k turbulence in SPARC provides a potential opportunity for more tractable prediction of plasma profiles using nonlinear gyrokinetics. This work is the first step toward full gyrokinetic profile prediction of SPARC kinetic profiles and the resulting fusion power and plasma gain. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 45 条
  • [1] Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling
    Angioni, C.
    Mantica, P.
    Puetterich, T.
    Valisa, M.
    Baruzzo, M.
    Belli, E. A.
    Belo, P.
    Casson, F. J.
    Challis, C.
    Drewelow, P.
    Giroud, C.
    Hawkes, N.
    Hender, T. C.
    Hobirk, J.
    Koskela, T.
    Taroni, L. Lauro
    Maggi, C. F.
    Mlynar, J.
    Odstrcil, T.
    Reinke, M. L.
    Romanelli, M.
    [J]. NUCLEAR FUSION, 2014, 54 (08)
  • [2] Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics
    Belli, E. A.
    Candy, J.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
  • [3] Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak
    Bonanomi, N.
    Mantica, P.
    Citrin, J.
    Goerler, T.
    Teaca, B.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bacharis, M.
    Baciero, A.
    [J]. NUCLEAR FUSION, 2018, 58 (12)
  • [5] The effect of ion-scale dynamics on electron-temperature-gradient turbulence
    Candy, J.
    Waltz, R. E.
    Fahey, M. R.
    Holland, C.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (08) : 1209 - 1220
  • [6] Multiscale-optimized plasma turbulence simulation on petascale architectures
    Candy, J.
    Sfiligoi, I.
    Belli, E.
    Hallatschek, K.
    Holland, C.
    Howard, N.
    D'Azevedo, E.
    [J]. COMPUTERS & FLUIDS, 2019, 188 : 125 - 135
  • [7] A high-accuracy Euleriangyrokinetic solver for collisional plasmas
    Candy, J.
    Belli, E. A.
    Bravenec, R. V.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 324 : 73 - 93
  • [8] Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
    Candy, J.
    Holland, C.
    Waltz, R. E.
    Fahey, M. R.
    Belli, E.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (06)
  • [9] Turbulence in the TORE SUPRA Tokamak: Measurements and Validation of Nonlinear Simulations
    Casati, A.
    Gerbaud, T.
    Hennequin, P.
    Bourdelle, C.
    Candy, J.
    Clairet, F.
    Garbet, X.
    Grandgirard, V.
    Guercan, Oe. D.
    Heuraux, S.
    Hoang, G. T.
    Honore, C.
    Imbeaux, F.
    Sabot, R.
    Sarazin, Y.
    Vermare, L.
    Waltz, R. E.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (16)
  • [10] Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade
    Casson, F. J.
    McDermott, R. M.
    Angioni, C.
    Camenen, Y.
    Dux, R.
    Fable, E.
    Fischer, R.
    Geiger, B.
    Manas, P.
    Menchero, L.
    Tardini, G.
    [J]. NUCLEAR FUSION, 2013, 53 (06)