Mean value theorems for the double zeta-function

被引:12
作者
Matsumoto, Kohji [1 ]
Tsumura, Hirofumi [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Tokyo 1920397, Japan
关键词
double zeta-functions; mean values; Lindelof hypothesis; Euler's constant; ANALYTIC CONTINUATION; EQUATIONS;
D O I
10.2969/jmsj/06710383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove asymptotic formulas for mean square values of the Euler double zeta-function zeta(2)(s(0), s), with respect to is. Those formulas enable us to propose a double analogue of the Lindelof hypothesis.
引用
收藏
页码:383 / 406
页数:24
相关论文
共 14 条
[1]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[2]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[3]   THE MEAN-VALUE OF THE RIEMANN ZETA-FUNCTION [J].
ATKINSON, FV .
ACTA MATHEMATICA, 1949, 81 (04) :353-376
[4]   EXPLICIT EVALUATION OF EULER SUMS [J].
BORWEIN, D ;
BORWEIN, JM ;
GIRGENSOHN, R .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 :277-294
[5]   On the estimation of the order of Euler-Zagier multiple zeta-functions [J].
Ishikawa, H ;
Matsumoto, K .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) :1151-1166
[6]   Analytic properties of double zeta-functions [J].
Kiuchi, I. ;
Tanigawa, Y. ;
Zhai, W. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (1-2) :16-29
[7]  
Kiuchi I, 2006, ANN SCUOLA NORM-SCI, V5, P445
[8]  
Komori Y, 2010, PUBL MATH-DEBRECEN, V77, P15
[9]   Functional equations for double zeta-functions [J].
Matsumoto, K .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 136 :1-7
[10]   Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series [J].
Matsumoto, K .
NAGOYA MATHEMATICAL JOURNAL, 2003, 172 :59-102