The Hopf bifurcation in the Shimizu-Morioka system

被引:13
|
作者
Llibre, Jaume [1 ]
Pessoa, Claudio [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Hopf bifurcation; Limit cycles; Bifurcation diagram;
D O I
10.1007/s11071-014-1805-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study the local Hopf bifurcations of codimension one and two, which occur in the Shimizu-Morioka system. This system is a simplified model proposed for studying the dynamics of the well-known Lorenz system for large Rayleigh numbers. We present an analytic study and their bifurcation diagrams of these kinds of Hopf bifurcation, showing the qualitative changes in the dynamics of its solutions for different values of the parameters.
引用
收藏
页码:2197 / 2205
页数:9
相关论文
共 50 条
  • [1] The Hopf bifurcation in the Shimizu–Morioka system
    Jaume Llibre
    Claudio Pessoa
    Nonlinear Dynamics, 2015, 79 : 2197 - 2205
  • [2] Anti-control of Hopf bifurcation in the Shimizu-Morioka system using an explicit criterion
    Yang, Yi
    Liao, Xiaofeng
    Dong, Tao
    NONLINEAR DYNAMICS, 2017, 89 (02) : 1453 - 1461
  • [3] STABILITY AND BIFURCATION ANALYSIS FOR A DELAYED SHIMIZU-MORIOKA MODEL
    Zhang, Xin
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 585 - 598
  • [4] Integrability analysis of the Shimizu-Morioka system
    Huang, Kaiyin
    Shi, Shaoyun
    Li, Wenlei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84
  • [5] Bifurcation analysis and chaos control in Shimizu-Morioka chaotic system with delayed feedback
    El-Dessoky, M. M.
    Yassen, M. T.
    Aly, E. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 283 - 297
  • [6] The tricomi problem for the Shimizu-Morioka dynamical system
    G. A. Leonov
    Doklady Mathematics, 2012, 86 : 850 - 853
  • [7] The tricomi problem for the Shimizu-Morioka dynamical system
    Leonov, G. A.
    DOKLADY MATHEMATICS, 2012, 86 (03) : 850 - 853
  • [8] Dynamic characteristics analysis of the Shimizu-Morioka chaotic system
    Shi, Wenxin
    Jia, Hongyan
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 813 - 816
  • [9] On hyperbolic attractors in a modified complex Shimizu-Morioka system
    Kruglov, Vyacheslav
    Sataev, Igor
    CHAOS, 2023, 33 (06)
  • [10] Bursting oscillations and bifurcation mechanism in memristor-based Shimizu-Morioka system with two time scales
    Wen, Zihao
    Li, Zhijun
    Li, Xiang
    CHAOS SOLITONS & FRACTALS, 2019, 128 : 58 - 70