Kidney Cancer Models for Pre-Clinical Drug Discovery: Challenges and Opportunities

被引:4
作者
Pohl, Laura [1 ]
Friedhoff, Jana [1 ]
Jurcic, Christina [1 ]
Teroerde, Miriam [1 ]
Schindler, Isabella [1 ]
Strepi, Konstantina [1 ]
Schneider, Felix [1 ]
Kaczorowski, Adam [1 ]
Hohenfellner, Markus [2 ,6 ]
Duensing, Anette [2 ,3 ,4 ,5 ,6 ]
Duensing, Stefan [1 ,2 ,6 ]
机构
[1] Univ Hosp Heidelberg, Dept Urol, Mol Urooncol, Heidelberg, Germany
[2] Univ Hosp Heidelberg, Dept Urol, Heidelberg, Germany
[3] Univ Hosp Heidelberg, Precis Oncol Urol Malignancies, Dept Urol, Heidelberg, Germany
[4] UPMC Hillman Canc Ctr, Canc Therapeut Program, Pittsburgh, PA USA
[5] Univ Pittsburgh, Dept Pathol, Sch Med, Pittsburgh, PA USA
[6] Natl Ctr Tumor Dis NCT Heidelberg, Heidelberg, Germany
关键词
renal cell carcinoma; intratumoral heterogeneity (ITH); drug development; patient-derived xenografts (PDX); preclinical studies; RENAL-CELL CARCINOMA; INTRATUMOR HETEROGENEITY; OPEN-LABEL; TUMOR; SUNITINIB; THERAPY; PATIENT; CLASSIFICATION; EVOLUTION; SURVIVAL;
D O I
10.3389/fonc.2022.889686
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Renal cell carcinoma (RCC) is among the most lethal urological malignancies once metastatic. The introduction of immune checkpoint inhibitors has revolutionized the therapeutic landscape of metastatic RCC, nevertheless, a significant proportion of patients will experience disease progression. Novel treatment options are therefore still needed and in vitro and in vivo model systems are crucial to ultimately improve disease control. At the same time, RCC is characterized by a number of molecular and functional peculiarities that have the potential to limit the utility of pre-clinical model systems. This includes not only the well-known genomic intratumoral heterogeneity (ITH) of RCC but also a remarkable functional ITH that can be shaped by influences of the tumor microenvironment. Importantly, RCC is among the tumor entities, in which a high number of intratumoral cytotoxic T cells is associated with a poor prognosis. In fact, many of these T cells are exhausted, which represents a major challenge for modeling tumor-immune cell interactions. Lastly, pre-clinical drug development commonly relies on using phenotypic screening of 2D or 3D RCC cell culture models, however, the problem of "reverse engineering" can prevent the identification of the precise mode of action of drug candidates thus impeding their translation to the clinic. In conclusion, a holistic approach to model the complex "ecosystem RCC" will likely require not only a combination of model systems but also an integration of concepts and methods using artificial intelligence to further improve pre-clinical drug discovery.
引用
收藏
页数:7
相关论文
共 70 条
[21]   Spatial patterns of tumour growth impact clonal diversification in a computational model and the TRACERx Renal study [J].
Fu, Xiao ;
Zhao, Yue ;
Lopez, Jose I. ;
Rowan, Andrew ;
Au, Lewis ;
Fendler, Annika ;
Hazell, Steve ;
Xu, Hang ;
Horswell, Stuart ;
Shepherd, Scott T. C. ;
Spencer, Charlotte E. ;
Spain, Lavinia ;
Byrne, Fiona ;
Stamp, Gordon ;
O'Brien, Tim ;
Nicol, David ;
Augustine, Marcellus ;
Chandra, Ashish ;
Rudman, Sarah ;
Toncheva, Antonia ;
Furness, Andrew J. S. ;
Pickering, Lisa ;
Kumar, Santosh ;
Koh, Dow-Mu ;
Messiou, Christina ;
ap Dafydd, Derfel ;
Orton, Matthew R. ;
Doran, Simon J. ;
Larkin, James ;
Swanton, Charles ;
Sahai, Erik ;
Litchfield, Kevin ;
Turajlic, Samra ;
Bates, Paul A. .
NATURE ECOLOGY & EVOLUTION, 2022, 6 (01) :88-+
[22]   Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing [J].
Gerlinger, Marco ;
Horswell, Stuart ;
Larkin, James ;
Rowan, Andrew J. ;
Salm, Max P. ;
Varela, Ignacio ;
Fisher, Rosalie ;
McGranahan, Nicholas ;
Matthews, Nicholas ;
Santos, Claudio R. ;
Martinez, Pierre ;
Phillimore, Benjamin ;
Begum, Sharmin ;
Rabinowitz, Adam ;
Spencer-Dene, Bradley ;
Gulati, Sakshi ;
Bates, Paul A. ;
Stamp, Gordon ;
Pickering, Lisa ;
Gore, Martin ;
Nicol, David L. ;
Hazell, Steven ;
Futreal, P. Andrew ;
Stewart, Aengus ;
Swanton, Charles .
NATURE GENETICS, 2014, 46 (03) :225-+
[23]   Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing [J].
Gerlinger, Marco ;
Rowan, Andrew J. ;
Horswell, Stuart ;
Larkin, James ;
Endesfelder, David ;
Gronroos, Eva ;
Martinez, Pierre ;
Matthews, Nicholas ;
Stewart, Aengus ;
Tarpey, Patrick ;
Varela, Ignacio ;
Phillimore, Benjamin ;
Begum, Sharmin ;
McDonald, Neil Q. ;
Butler, Adam ;
Jones, David ;
Raine, Keiran ;
Latimer, Calli ;
Santos, Claudio R. ;
Nohadani, Mahrokh ;
Eklund, Aron C. ;
Spencer-Dene, Bradley ;
Clark, Graham ;
Pickering, Lisa ;
Stamp, Gordon ;
Gore, Martin ;
Szallasi, Zoltan ;
Downward, Julian ;
Futreal, P. Andrew ;
Swanton, Charles .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) :883-892
[24]   Tumor-Infiltrating and Peripheral Blood T-cell Immunophenotypes Predict Early Relapse in Localized Clear Cell Renal Cell Carcinoma [J].
Giraldo, Nicolas A. ;
Becht, Etienne ;
Vano, Yann ;
Petitprez, Florent ;
Lacroix, Laetitia ;
Validire, Pierre ;
Sanchez-Salas, Rafael ;
Ingels, Alexandre ;
Oudard, Stephane ;
Moatti, Audrey ;
Buttard, Benedicte ;
Bourass, Sarah ;
Germain, Claire ;
Cathelineau, Xavier ;
Fridman, Wolf H. ;
Sautes-Fridman, Catherine .
CLINICAL CANCER RESEARCH, 2017, 23 (15) :4416-4428
[25]   Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases [J].
Grassi, Ludovica ;
Alfonsi, Romina ;
Francescangeli, Federica ;
Signore, Michele ;
De Angelis, Maria Laura ;
Addario, Antonio ;
Costantini, Manuela ;
Flex, Elisabetta ;
Ciolfi, Andrea ;
Pizzi, Simone ;
Bruselles, Alessandro ;
Pallocca, Matteo ;
Simone, Giuseppe ;
Haoui, Mustapha ;
Falchi, Mario ;
Milella, Michele ;
Sentinelli, Steno ;
Di Matteo, Paola ;
Stellacci, Emilia ;
Gallucci, Michele ;
Muto, Giovanni ;
Tartaglia, Marco ;
De Maria, Ruggero ;
Bonci, Desiree .
CELL DEATH & DISEASE, 2019, 10 (3)
[26]   Artificial intelligence to deep learning: machine intelligence approach for drug discovery [J].
Gupta, Rohan ;
Srivastava, Devesh ;
Sahu, Mehar ;
Tiwari, Swati ;
Ambasta, Rashmi K. ;
Kumar, Pravir .
MOLECULAR DIVERSITY, 2021, 25 (03) :1315-1360
[27]   DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies [J].
Han, Yi ;
Yang, Juze ;
Qian, Xinyi ;
Cheng, Wei-Chung ;
Liu, Shu-Hsuan ;
Hua, Xing ;
Zhou, Liyuan ;
Yang, Yaning ;
Wu, Qingbiao ;
Liu, Pengyuan ;
Lu, Yan .
NUCLEIC ACIDS RESEARCH, 2019, 47 (08)
[28]   Targeting the Tumor Microenvironment in Renal Cell Cancer Biology and Therapy [J].
Heidegger, Isabel ;
Pircher, Andreas ;
Pichler, Renate .
FRONTIERS IN ONCOLOGY, 2019, 9
[29]   Treatment of Advanced Renal Cell Carcinoma: Immunotherapies Have Demonstrated Overall Survival Benefits While Targeted Therapies Have Not [J].
Hemminki, Otto ;
Perlis, Nathan ;
Bjorklund, Johan ;
Finelli, Antonio ;
Zlotta, Alexandre R. ;
Hemminki, Akseli .
EUROPEAN UROLOGY OPEN SCIENCE, 2020, 22 :61-73
[30]   Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity [J].
Hoefflin, Rouven ;
Lahrmann, Bernd ;
Warsow, Gregor ;
Huebschmann, Daniel ;
Spath, Cathleen ;
Walter, Britta ;
Chen, Xin ;
Hofer, Luisa ;
Macher-Goeppinger, Stephan ;
Tolstov, Yanis ;
Korzeniewski, Nina ;
Duensing, Anette ;
Gruellich, Carsten ;
Jaeger, Dirk ;
Perner, Sven ;
Schoenberg, Gita ;
Nyarangi-Dix, Joanne ;
Isaac, Sanjay ;
Hatiboglu, Gencay ;
Teber, Dogu ;
Hadaschik, Boris ;
Pahernik, Sascha ;
Roth, Wilfried ;
Eils, Roland ;
Schlesner, Matthias ;
Sueltmann, Holger ;
Hohenfellner, Markus ;
Grabe, Niels ;
Duensing, Stefan .
NATURE COMMUNICATIONS, 2016, 7