共 50 条
Enhanced thermal conductivity and mechanical properties of a GNP reinforced Si3N4 composite
被引:24
|作者:
Saleem, Adil
[1
,2
]
Zhang, Yujun
[1
,2
]
Gong, Hongyu
[1
,2
]
Majeed, Muhammad K.
[3
]
Jing, Jie
[1
,2
]
Lin, Xiao
[1
,2
]
Ashfaq, M. Zeeshan
[1
,2
]
机构:
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Sch Mat Sci & Engn, Jinan 250061, Shandong, Peoples R China
[2] Shandong Univ, Key Lab Special Funct Aggregated Mat, Minist Educ, Sch Mat Sci & Engn, Jinan 250061, Shandong, Peoples R China
[3] Shandong Univ, Key Lab Colloid & Interface Chem, Minist Educ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China
来源:
关键词:
SILICON-NITRIDE;
MULTILAYER GRAPHENE;
CARBON NANOTUBES;
STABILITY;
MICROSTRUCTURE;
CERAMICS;
BEHAVIOR;
ALUMINA;
RAMAN;
POWDER;
D O I:
10.1039/c9ra09286b
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Graphene nanocomposites can significantly enhance the thermal conductivity and mechanical properties of ceramics at relatively low nano-filler addition. Herein, graphene nano-platelet reinforced Si3N4 (GNP/Si3N4) composites were prepared by hot press (HP) sintering using fluoride (AlF3, MgF2) sintering-additives. The microstructural properties revealed the enhanced crystallization degree and density of the GNP/Si3N4 composites with different concentrations of graphene nano-platelets (GNPs). These properties help to achieve a significantly improved thermal conductivity (from 82.42 to 137.47 W m(-1) K-1) of the GNP/Si3N4 composites. The morphology of the composites shows a uniform distribution of GNP, whereas overlapping of GNPs (2 to 4 platelets) at the grain boundaries of Si3N4 was observed. The fracture toughness and Vickers hardness of the composites also increased with the increasing content of GNP. The toughening mechanism was similar in all composites with GNP addition in respect of pull out, crack deflection, crack branching and crack bridging.
引用
收藏
页码:39986 / 39992
页数:7
相关论文