Scaled cohesive zone models for fatigue crack propagation

被引:11
|
作者
Davey, Keith [1 ]
Darvizeh, Rooholamin [1 ]
Akhigbe-Midu, Osagie [1 ]
Sadeghi, Hamed [2 ]
机构
[1] Univ Manchester, Dept Mech Aerosp & Civil Engn, Manchester, England
[2] Univ Guilan, Fac Mech Engn, Rasht, Iran
关键词
Scaling; Fracture mechanics; Fatigue; Finite similitude; Scale effects; FINITE-ELEMENT-METHOD; INCOMPLETE SELF-SIMILARITY; FRACTURE-MECHANICS; GROWTH; SIMULATION; BEHAVIOR; STEEL;
D O I
10.1016/j.ijsolstr.2022.111956
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A cohesive zone model is a phenomenological model of the fracture process, which straddles empiricism and material science and as such provides a pragmatic choice for fatigue analysis. Material separation in the cohesive zone is governed by a traction-separation law and consequently all cohesive models feature a size effect since they involve the explicit property separation. The application and assessment of cohesive zone models is focus of this paper for the design and analysis of scaled models. This is a subject area that is understandably scarce in the scientific literature in view of the changes that take place with scale, which make scaled models unrepresentative of full-scale behaviour. Recently however a new scaling theory has appeared in the open literature called finite similitude, which introduces new similitude rules that can in principle account for all scale dependencies. The similitude rule of interest here is the first-order rule involving two scaled experiments, which is shown to be sufficient in capturing modelled fatigue behaviour. The commercial finite element software Abaqus is employed to investigate the two-scaled experiment approach applied to both linear and non-linear materials. It is shown in the paper how large discrepancies be-tween scaled and full-sized specimens with one scaled model are absent when two scaled models are combined according to the first-order finite similitude rule.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals
    Moriconi, C.
    Henaff, G.
    Halm, D.
    INTERNATIONAL JOURNAL OF FATIGUE, 2014, 68 : 56 - 66
  • [2] Phase field cohesive zone modeling for fatigue crack propagation in quasi-brittle materials
    Baktheer, Abedulgader
    Martinez-Paneda, Emilio
    Aldakheel, Fadi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 422
  • [3] Cohesive zone modeling of creep-fatigue crack propagation with dwell time
    Li, Wen
    Yang, Xiaohong
    Zhang, Guobin
    Ma, Yunhua
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (10):
  • [4] Influence of hydrogen coverage on the parameters of a cohesive zone model dedicated to fatigue crack propagation
    Moriconi, C.
    Henaff, G.
    Halm, D.
    11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10
  • [5] Rate dependent cohesive zone model for fatigue crack growth
    Zhang, Qinbo
    Xu, Zihan
    Tao, Weiming
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 271
  • [6] Cohesive zone modeling of crack propagation influenced by martensitic phase transformation
    Issa, Sally
    Eliasson, Sara
    Lundberg, Alexander
    Wallin, Mathias
    Hallberg, Hakan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 712 : 564 - 573
  • [7] Identification of the parameters contained in a cyclic cohesive zone model for fatigue crack propagation
    Papa, Tommaso
    Bocciarelli, Massimiliano
    ENGINEERING FRACTURE MECHANICS, 2023, 279
  • [8] The cohesive zone crack analogue for fretting fatigue based on mild wear
    Giannakopoulos, A. E.
    Zisis, Th.
    Georgiadis, H. G.
    Lindley, T. C.
    ENGINEERING FRACTURE MECHANICS, 2022, 273
  • [9] A cohesive zone model to simulate fatigue crack propagation under high pressure gaseous hydrogen
    Bilotta, Giovambattista
    Moriconi, Clara
    Henaff, Gilbert
    Arzaghi, Mandana
    Halm, Damien
    11TH INTERNATIONAL FATIGUE CONGRESS, PTS 1 AND 2, 2014, 891-892 : 765 - 770
  • [10] A cohesive zone model for fatigue crack growth allowing for crack retardation
    Ural, Ani
    Krishnan, Venkat R.
    Papoulia, Katerina D.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (11-12) : 2453 - 2462