Low-power linear computation using nonlinear ferroelectric tunnel junction memristors

被引:169
作者
Berdan, Radu [1 ,2 ]
Marukame, Takao [1 ]
Ota, Kensuke [3 ]
Yamaguchi, Marina [3 ]
Saitoh, Masumi [3 ]
Fujii, Shosuke [3 ]
Deguchi, Jun [2 ]
Nishi, Yoshifumi [1 ]
机构
[1] Toshiba Corp R&D Ctr, Frontier Res Lab, Kawasaki, Kanagawa, Japan
[2] Kioxia Corp, Inst Memory Technol R&D, Kawasaki, Kanagawa, Japan
[3] Kioxia Corp, Inst Memory Technol R&D, Yokaichi, Japan
关键词
CLASSIFICATION; MEMORY;
D O I
10.1038/s41928-020-0405-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nonlinear ferroelectric tunnel junction memristors can be used to perform linear vector-matrix multiplication operations at ultralow currents. Analogue in-memory computing using memristors could alleviate the performance constraints imposed by digital von Neumann systems in data-intensive tasks. Conventional linear memristors typically operate at high currents, potentially limiting power efficiency and scalability in practical applications. Here, we show that nonlinear ferroelectric tunnel junction memristors can perform linear computation at ultralow currents. Using logarithmic line drivers, we demonstrate that analogue-voltage-amplitude vector-matrix multiplication (VMM) can be performed in selectorless ferroelectric tunnel junction crossbars by exploiting a device nonlinearity factor that remains constant for multiple conductive states. We also show that our ferroelectric tunnel junction crossbars have the attributes required to scale analogue VMM-intensive applications, such as neural inference engines, towards energy efficiencies above 100 tera-operations per second per watt.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 45 条
  • [1] Equivalent-accuracy accelerated neural-network training using analogue memory
    Ambrogio, Stefano
    Narayanan, Pritish
    Tsai, Hsinyu
    Shelby, Robert M.
    Boybat, Irem
    di Nolfo, Carmelo
    Sidler, Severin
    Giordano, Massimo
    Bodini, Martina
    Farinha, Nathan C. P.
    Killeen, Benjamin
    Cheng, Christina
    Jaoudi, Yassine
    Burr, Geoffrey W.
    [J]. NATURE, 2018, 558 (7708) : 60 - +
  • [2] Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
    Bayat, F. Merrikh
    Prezioso, M.
    Chakrabarti, B.
    Nili, H.
    Kataeva, I.
    Strukov, D.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [3] Ferroelectricity in hafnium oxide thin films
    Boescke, T. S.
    Mueller, J.
    Braeuhaus, D.
    Schroeder, U.
    Boettger, U.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (10)
  • [4] A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations
    Cai, Fuxi
    Correll, Justin M.
    Lee, Seung Hwan
    Lim, Yong
    Bothra, Vishishtha
    Zhang, Zhengya
    Flynn, Michael P.
    Lu, Wei D.
    [J]. NATURE ELECTRONICS, 2019, 2 (07) : 290 - 299
  • [5] Chanthbouala A, 2012, NAT MATER, V11, P860, DOI [10.1038/NMAT3415, 10.1038/nmat3415]
  • [6] Experimental Demonstration of Feature Extraction and Dimensionality Reduction Using Memristor Networks
    Choi, Shinhyun
    Shin, Jong Hoon
    Lee, Jihang
    Sheridan, Patrick
    Lu, Wei D.
    [J]. NANO LETTERS, 2017, 17 (05) : 3113 - 3118
  • [7] FUJII S, 2019, FERROELECTRICITY DOP, P437
  • [8] Fujii S, 2016, S VLSI TECH, DOI 10.1109/ICAUMS.2016.8479796
  • [9] Ferroelectric tunnel junctions for information storage and processing
    Garcia, Vincent
    Bibes, Manuel
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [10] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778