Low-temperature electrical and magnetic properties of La0.6Sr0.4Co0.2Fe0.8O3-δ nanofibers prepared by electrospinning

被引:10
作者
Chen, Si-Heng [1 ]
Wang, Xiao-Xiong [1 ]
Sui, Jin-Xia [1 ]
Liu, Qi [1 ]
Xu, Sheng [1 ]
Yuan, Feng [1 ]
Ramakrishna, Seeram [1 ,2 ]
Long, Yun-Ze [1 ,3 ]
机构
[1] Qingdao Univ, Coll Phys, Collaborat Innovat Ctr Nanomat & Devices, Qingdao 266071, Peoples R China
[2] Natl Univ Singapore, Fac Engn, Ctr Nanofibers & Nanotechnol, Singapore, Singapore
[3] Qingdao Univ, Collaborat Innovat Ctr Ecotext Shandong Prov, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
La0.6Sr0.4Co0.2Fe0.8O3-delta; Electrospinning; Low-temperature; Magnetic property; Electrical conductivity; OXIDE FUEL-CELLS; ELECTROCHEMICAL PERFORMANCE; CATHODES; CONDUCTIVITY; OPTIMIZATION; DESIGN; STATE;
D O I
10.1016/j.ceramint.2019.12.198
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructural, magnetic, and electrical properties of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCFO) nanofibers prepared by electrospinning and calcination were systematically investigated. It was found that the as-prepared nanofibers manifested ferromagnetism at low temperatures. Moreover, the resistance and magnetoresistance (MR) data conformed to the one-dimensional variable range hopping (1D VRH) model and revealed that LSCFO nanofibers had different electronic conduction behavior at different temperatures and magnetic fields. LSCFO nanofibers had small negative MR at low temperatures and large positive MR at high temperatures, and the transition temperature ranged between 240 and 260 K. The negative MR and the positive MR of LSCFO nanofibers manifested a fit to the 1D weak localization model and the 1D VRH model, respectively. Therefore, the proposed work can provide an important reference to the design of solid oxide fuel cells (SOFCs) based on the LSCFO cathode.
引用
收藏
页码:9389 / 9395
页数:7
相关论文
共 42 条
[1]   Electrochemical performance of nanostructured La0.6Sr0.4CoO3-δ and Sm0.5Sr0.5CoO3-δ cathodes for IT-SOFCs [J].
Acuna, L. M. ;
Pena-Martinez, J. ;
Marrero-Lopez, D. ;
Fuentes, R. O. ;
Nunez, P. ;
Lamas, D. G. .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9276-9283
[2]  
ALTSHULER BL, 1981, JETP LETT+, V33, P94
[3]  
[Anonymous], J ALLOY COMP
[4]  
[Anonymous], 1979, Electronic Processes in Non -Crystalline Materials
[5]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[6]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/NMAT3064, 10.1038/nmat3064]
[7]   Degradation of oxygen reduction reaction kinetics in porous La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes due to aging-induced changes in surface chemistry [J].
Baque, Laura C. ;
Soldati, Analia L. ;
Teixeira-Neto, Erico ;
Troiani, Horacio E. ;
Schreiber, Anja ;
Serquis, Adriana C. .
JOURNAL OF POWER SOURCES, 2017, 337 :166-172
[8]   High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes [J].
Bellino, Martin G. ;
Sacanell, Joaquin G. ;
Lamas, Diego G. ;
Leyva, Ana G. ;
Walsoe de Reca, Noemi E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (11) :3066-+
[9]   Enhanced ionic conductivity in nanostructured, heavily doped ceria ceramics [J].
Bellino, MG ;
Lamas, DG ;
de Reca, NEW .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (01) :107-113
[10]   Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte [J].
Boulineau, Sylvain ;
Tarascon, Jean-Marie ;
Leriche, Jean-Bernard ;
Viallet, Virginie .
SOLID STATE IONICS, 2013, 242 :45-48