A combinational molecular design to achieve highly efficient deep-blue electrofluorescence

被引:46
作者
Bian, Mengying [1 ,2 ]
Zhao, Zifeng [3 ]
Li, Yu [1 ,2 ]
Li, Qing [4 ]
Chen, Zhijian [1 ,2 ,5 ,6 ]
Zhang, Dongdong [7 ]
Wang, Shufeng [1 ,2 ]
Bian, Zuqiang [3 ]
Liu, Zhiwei [3 ]
Duan, Lian [7 ]
Xiao, Lixin [1 ,2 ,5 ,6 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[4] Valiant Corp, Yantai 264006, Shandong, Peoples R China
[5] Chongqing Univ Arts & Sci, Coinnovat Ctr Micro Nano Optoelect Mat & Devices, Chongqing 402160, Peoples R China
[6] New Display Device & Syst Integrat Collaborat Inno, Fuzhou 350002, Fujian, Peoples R China
[7] Tsinghua Univ, Dept Chem, Minist Educ, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
LIGHT-EMITTING-DIODES; AGGREGATION-INDUCED EMISSION; OPTICAL-ENERGY GAPS; DELAYED FLUORESCENCE; ELECTROLUMINESCENT DEVICES; QUANTUM EFFICIENCY; TRIPLET EXCITONS; HIGH-PERFORMANCE; OLEDS; ANTHRACENE;
D O I
10.1039/c7tc04685e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A deep-blue emitter 1-(10-(4-methoxyphenyl) anthracen-9-yl)-4-(10-(4-cyanophenyl) anthracen-9yl) tetraphenylethene (TPEA) has been successfully prepared by a combinational molecular design, which contains triplet-triplet fusion (TTF) and hybridized local charge transfer (HLCT) characteristics to increase the ratio of triplet excitons used. The tetraphenylethene (TPE) moiety contributes the emitter with an aggregation-induced emission (AIE) property to enhance the solid-state luminescence efficiency. The crystallographic structure shows that the two anthracene groups are twisted from the central TPE moiety, which effectively prevents a bathochromic shift of the emission. In addition, we adopted a donor-acceptor (D-A) structure to improve the charge balance in organic light-emitting diodes (OLEDs). The material possesses high thermal stability with a glass transition temperature (Tg) of 155 1C. Based on all these advantages, a high performance of the non-doped device was achieved with a turnon voltage (Von) of 2.6 V at a luminance of 1 cd m(-2), a maximum power efficiency (ZPE, max) of 11.1 lm W-1, a maximum current efficiency (ZCE, max) of 9.9 cd A(-1), and a low current efficiency roll-off even at 1000 cd m(-2). Moreover, a deep-blue emission with Commission Internationale de l'E ' clairage (CIE) coordinates of (0.15, 0.09), a maximum external quantum efficiency (Zext, max) of 8.0% and the highest ZPE, max of 7.3 lm W-1 among all the TTF and HLCT deep-blue emitters were obtained by doping TPEA into the host of bis-4-[(N-carbazolyl) phenyl]-phenylphosphine oxide (BCPO). These results indicate that the combinational molecular design is promising for highly efficient deep-blue emitters.
引用
收藏
页码:745 / 753
页数:9
相关论文
共 42 条
[1]   Highly emissive carbazole-functionalized homopoly(spirobifluorene) for deep-blue polymer light-emitting diodes [J].
Bai, Keyan ;
Wang, Shumeng ;
Zhao, Lei ;
Ding, Junqiao ;
Wang, Lixiang .
POLYMER CHEMISTRY, 2017, 8 (14) :2182-2188
[2]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[3]   High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex [J].
Chen, FC ;
Yang, Y ;
Thompson, ME ;
Kido, J .
APPLIED PHYSICS LETTERS, 2002, 80 (13) :2308-2310
[4]  
Chen YH, 2016, CHEM SCI, V7, P4044, DOI 10.1039/c6sc00100a
[5]   Ultrahigh Efficiency Fluorescent Single and Bi-Layer Organic Light Emitting Diodes: The Key Role of Triplet Fusion [J].
Chiang, Chien-Jung ;
Kimyonok, Alpay ;
Etherington, Marc K. ;
Griffiths, Gareth C. ;
Jankus, Vygintas ;
Turksoy, Figen ;
Monkman, Andy P. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (06) :739-746
[6]   Strategies to Design Bipolar Small Molecules for OLEDs: Donor-Acceptor Structure and Non-Donor-Acceptor Structure [J].
Duan, Lian ;
Qiao, Juan ;
Sun, Yongduo ;
Qiu, Yong .
ADVANCED MATERIALS, 2011, 23 (09) :1137-1144
[7]   Separation of electrical and optical energy gaps for constructing bipolar organic wide bandgap materials [J].
Hu, Dehua ;
Shen, Fangzhong ;
Liu, He ;
Lu, Ping ;
Lv, Ying ;
Liu, Dandan ;
Ma, Yuguang .
CHEMICAL COMMUNICATIONS, 2012, 48 (24) :3015-3017
[8]   Bisanthracene- Based Donor- Acceptor- type Light- Emitting Dopants: Highly Effi cient Deep- Blue Emission in Organic Light- Emitting Devices [J].
Hu, Jian-Yong ;
Pu, Yong-Jin ;
Satoh, Fumiya ;
Kawata, So ;
Katagiri, Hiroshi ;
Sasabe, Hisahiro ;
Kido, Junji .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (14) :2064-2071
[9]   Recent Progress in High-Efficiency Blue-Light-Emitting Materials for Organic Light-Emitting Diodes [J].
Im, Yirang ;
Byun, Seong Yong ;
Kim, Ji Han ;
Lee, Dong Ryun ;
Oh, Chan Seok ;
Yook, Kyoung Soo ;
Lee, Jun Yeob .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (13)
[10]   Deep Blue Exciplex Organic Light-Emitting Diodes with Enhanced Efficiency; P-type or E-type Triplet Conversion to Singlet Excitons? [J].
Jankus, Vygintas ;
Chiang, Chien-Jung ;
Dias, Fernando ;
Monkman, Andrew P. .
ADVANCED MATERIALS, 2013, 25 (10) :1455-1459