Ni3S2@CoS core-shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors

被引:157
作者
Li, Rui [1 ]
Wang, Senlin [1 ]
Wang, Jianpeng [1 ]
Huang, Zongchuan [1 ]
机构
[1] Huaqiao Univ, Coll Mat Sci & Engn, Xiamen 361021, Fujian, Peoples R China
关键词
COBALT-SULFIDE; ENERGY-CONVERSION; OXIDE COMPOSITE; ELECTRODE; GROWTH; NI3S2;
D O I
10.1039/c5cp01945a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we demonstrate a facile method to fabricate novel Ni3S2 nano-triangular pyramid (NTP) arrays on Ni foam through a hydrothermal process and build unique Ni3S2@CoS core-shell NTP arrays by electro-deposition. The obtained Ni3S2@CoS material displays twice the specific capacitance of the pure Ni3S2 material in both a three-electrode system (4.89 F cm(-2) at 4 mA cm(-2)) and asymmetric supercapacitor device (0.69 F cm(-2) at 1.43 mA cm(-2)). In addition, the asymmetric supercapacitor demonstrates the outstanding energy density of 28.24 W h kg(-1) at a power density of 134.46 W kg(-1), with a stable cycle life (98.83% retained after 2000 cycles). The unique structure of the Ni3S2@CoS core-shell NTP arrays, which provides an ultra-thin CoS shell to enlarge efficient areas, introduces good conductivity, and short transportation lengths for both ions and electrons, contributes most to its excellent performance. Moreover, the bare Ni3S2 NTP arrays can be used as a new template to build other potential electrode materials.
引用
收藏
页码:16434 / 16442
页数:9
相关论文
共 43 条
[1]   ELECTROCHEMICAL AND XPS STUDIES OF THE SURFACE OXIDATION OF SYNTHETIC HEAZLEWOODITE (NI3S2) [J].
BUCKLEY, AN ;
WOODS, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1991, 21 (07) :575-582
[2]   High-Performance Supercapacitor Electrode Based on the Unique ZnO@Co3O4 Core/Shell Heterostructures on Nickel Foam [J].
Cai, Daoping ;
Huang, Hui ;
Wang, Dandan ;
Liu, Bin ;
Wang, Lingling ;
Liu, Yuan ;
Li, Qiuhong ;
Wang, Taihong .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :15905-15912
[3]   Hierarchical NiCo2O4@nickel-sulfide nanoplate arrays for high performance supercapacitors [J].
Chu, Qingxin ;
Wang, Wei ;
Wang, Xiaofeng ;
Yang, Bin ;
Liu, Xiaoyang ;
Chen, Jiuhua .
JOURNAL OF POWER SOURCES, 2015, 276 :19-25
[4]   Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices [J].
Gao, Min-Rui ;
Xu, Yun-Fei ;
Jiang, Jun ;
Yu, Shu-Hong .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2986-3017
[5]   Silicon carbide nanowires@Ni(OH)2 core-shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability [J].
Gu, Lin ;
Wang, Yewu ;
Lu, Ren ;
Wang, Wei ;
Peng, Xinsheng ;
Sha, Jian .
JOURNAL OF POWER SOURCES, 2015, 273 :479-485
[6]   Energy storage in electrochemical capacitors: designing functional materials to improve performance [J].
Hall, Peter J. ;
Mirzaeian, Mojtaba ;
Fletcher, S. Isobel ;
Sillars, Fiona B. ;
Rennie, Anthony J. R. ;
Shitta-Bey, Gbolahan O. ;
Wilson, Grant ;
Cruden, Andrew ;
Carter, Rebecca .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) :1238-1251
[7]   Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes [J].
Huang, Ming ;
Li, Fei ;
Zhao, Xiao Li ;
Luo, Da ;
You, Xue Qiu ;
Zhang, Yu Xin ;
Li, Gang .
ELECTROCHIMICA ACTA, 2015, 152 :172-177
[8]   Exfoliation-restacking synthesis of coal-layered double hydroxide nanosheets/reduced graphene oxide composite for high performance supercapacitors [J].
Huang, Zongchuan ;
Wang, Senlin ;
Wang, Jianpeng ;
Yu, Yaming ;
Wen, Jingjing ;
Li, Rui .
ELECTROCHIMICA ACTA, 2015, 152 :117-125
[9]   Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage [J].
Jiang, Jian ;
Li, Yuanyuan ;
Liu, Jinping ;
Huang, Xintang ;
Yuan, Changzhou ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2012, 24 (38) :5166-5180
[10]   Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors [J].
Kim, Myeongjin ;
Kim, Jooheon .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (23) :11323-11336