Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer

被引:5
作者
Tang, Bin [1 ,2 ]
Lenkowicz, Jacopo [3 ]
Peng, Qian [2 ]
Boldrini, Luca [3 ]
Hou, Qing [1 ]
Dinapoli, Nicola [3 ]
Valentini, Vincenzo [3 ]
Diao, Peng [2 ]
Yin, Gang [2 ]
Orlandini, Lucia Clara [2 ]
机构
[1] Sichuan Univ, Inst Nucl Sci & Technol, Minist Educ, Key Lab Radiat Phys & Technol, Chengdu, Peoples R China
[2] Sichuan Canc Hosp & Inst, Dept Radiat Oncol, Radiat Oncol Key Lab Sichuan Prov, Chengdu, Peoples R China
[3] Fdn Policlin Univ A Gemelli IRCCS, Dipartimento Sci Radiol, Rome, Italy
关键词
Radiomics; Rectum; Predictive models; Pathological complete response; LASSO; CHEMORADIATION THERAPY; PET/CT;
D O I
10.1186/s12880-022-00773-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose This study aims to further enhance a validated radiomics-based model for predicting pathologic complete response (pCR) after chemo-radiotherapy in locally advanced rectal cancer (LARC) for use in clinical practice. Methods A generalized linear model (GLM) to predict pCR in LARC patients previously trained in Europe and validated with an external inter-continental cohort (59 patients), was first examined with further 88 intercontinental patient datasets to assess its reproducibility; then new radiomics and clinical features, and validation methods were investigated to build a new model for enhancing the pCR prediction for patients admitted to our department. The patients were divided into training group (75%) and validation group (25%) according to their demographic. The least absolute shrinkage and selection operator (LASSO) logistic regression was used to reduce the dimensionality of the extracted features of the training group and select the optimal ones; the performance of the reference GLM and enhanced models was compared through the area under curve (AUC) of the receiver operating characteristics. Results The value of AUC of the reference model was 0.831 (95% CI, 0.701-0.961), and 0.828 (95% CI, 0.700-0.956) in the original and new validation cohorts, respectively, showing a reproducibility in the applicability of the GLM model. Eight features were found to be significant with LASSO and used to establish an enhanced model. The AUC of the enhanced model of 0.926 (95% CI, 0.859-0.993) for training, and 0.926 (95% CI, 0.767-1.00) for the validation group shows better performance than the reference model. Conclusions The GLM model shows good reproducibility in predicting pCR in LARC; the enhanced model has the potential to improve prediction accuracy and may be a candidate in clinical practice.
引用
收藏
页数:8
相关论文
共 37 条
[21]   Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer [J].
Li, Yuqiang ;
Liu, Wenxue ;
Pei, Qian ;
Zhao, Lilan ;
Guengoer, Cenap ;
Zhu, Hong ;
Song, Xiangping ;
Li, Chenglong ;
Zhou, Zhongyi ;
Xu, Yang ;
Wang, Dan ;
Tan, Fengbo ;
Yang, Pei ;
Pei, Haiping .
CANCER MEDICINE, 2019, 8 (17) :7244-7252
[22]   FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer [J].
Lovinfosse, Pierre ;
Polus, Marc ;
Van Daele, Daniel ;
Martinive, Philippe ;
Daenen, Frederic ;
Hatt, Mathieu ;
Visvikis, Dimitris ;
Koopmansch, Benjamin ;
Lambert, Frederic ;
Coimbra, Carla ;
Seidel, Laurence ;
Albert, Adelin ;
Delvenne, Philippe ;
Hustinx, Roland .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (03) :365-375
[23]   Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data [J].
Maas, Monique ;
Nelemans, Patty J. ;
Valentini, Vincenzo ;
Das, Prajnan ;
Roedel, Claus ;
Kuo, Li-Jen ;
Calvo, Felipe A. ;
Garcia-Aguilar, Julio ;
Glynne-Jones, Rob ;
Haustermans, Karin ;
Mohiuddin, Mohammed ;
Pucciarelli, Salvatore ;
Small, William, Jr. ;
Suarez, Javier ;
Theodoropoulos, George ;
Biondo, Sebastiano ;
Beets-Tan, Regina G. H. ;
Beets, Geerard L. .
LANCET ONCOLOGY, 2010, 11 (09) :835-844
[24]  
MANDARD AM, 1994, CANCER, V73, P2680, DOI 10.1002/1097-0142(19940601)73:11<2680::AID-CNCR2820731105>3.0.CO
[25]  
2-C
[26]  
Pirashanthan A., 2021, SCI REP-UK, V11, P1, DOI DOI 10.1038/S41598-020-79139-8
[27]   Tumor detectability and conspicuity comparison of standard b1000 and ultrahigh b2000 diffusion-weighted imaging in rectal cancer [J].
Pizzi, Andrea Delli ;
Caposiena, Daniele ;
Mastrodicasa, Domenico ;
Trebeschi, Stefano ;
Lambregts, Doenja ;
Rosa, Consuelo ;
Cianci, Roberta ;
Seccia, Barbara ;
Sessa, Barbara ;
Di Flamminio, Filippo Maria ;
Chiacchiaretta, Piero ;
Caravatta, Luciana ;
Cinalli, Sebastiano ;
Di Sebastiano, Pierluigi ;
Caulo, Massimo ;
Genovesi, Domenico ;
Beets-Tan, Regina ;
Basilico, Raffaella .
ABDOMINAL RADIOLOGY, 2019, 44 (11) :3595-3605
[28]   Complete pathologic response following preoperative chemoradiation therapy for middle to lower rectal cancer is not a prognostic factor for a better outcome [J].
Pucciarelli, S ;
Toppan, P ;
Friso, ML ;
Russo, V ;
Pasetto, L ;
Urso, E ;
Marino, F ;
Ambrosi, A ;
Lise, M .
DISEASES OF THE COLON & RECTUM, 2004, 47 (11) :1798-1807
[29]   Reproducibility of rectal tumor volume delineation using diffusion-weighted MRI: Agreement on volumes between observers [J].
Rosa, C. ;
Caravatta, L. ;
Andrea, D. P. ;
Di Tommaso, M. ;
Cianci, R. ;
Gasparini, L. ;
Perrotti, F. ;
Soimita, J. ;
Sartori, S. ;
Zecca, I. A. L. ;
Di Nicola, M. ;
Basilico, R. ;
Genovesi, D. .
CANCER RADIOTHERAPIE, 2019, 23 (03) :216-221
[30]   Chemoradiotherapy for rectal cancer: An updated analysis of factors affecting pathological response [J].
Sanghera, P. ;
Wong, D. W. Y. ;
McConkey, C. C. ;
Geh, J. I. ;
Hartley, A. .
CLINICAL ONCOLOGY, 2008, 20 (02) :176-183