Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer

被引:4
作者
Tang, Bin [1 ,2 ]
Lenkowicz, Jacopo [3 ]
Peng, Qian [2 ]
Boldrini, Luca [3 ]
Hou, Qing [1 ]
Dinapoli, Nicola [3 ]
Valentini, Vincenzo [3 ]
Diao, Peng [2 ]
Yin, Gang [2 ]
Orlandini, Lucia Clara [2 ]
机构
[1] Sichuan Univ, Inst Nucl Sci & Technol, Minist Educ, Key Lab Radiat Phys & Technol, Chengdu, Peoples R China
[2] Sichuan Canc Hosp & Inst, Dept Radiat Oncol, Radiat Oncol Key Lab Sichuan Prov, Chengdu, Peoples R China
[3] Fdn Policlin Univ A Gemelli IRCCS, Dipartimento Sci Radiol, Rome, Italy
关键词
Radiomics; Rectum; Predictive models; Pathological complete response; LASSO; CHEMORADIATION THERAPY; PET/CT;
D O I
10.1186/s12880-022-00773-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose This study aims to further enhance a validated radiomics-based model for predicting pathologic complete response (pCR) after chemo-radiotherapy in locally advanced rectal cancer (LARC) for use in clinical practice. Methods A generalized linear model (GLM) to predict pCR in LARC patients previously trained in Europe and validated with an external inter-continental cohort (59 patients), was first examined with further 88 intercontinental patient datasets to assess its reproducibility; then new radiomics and clinical features, and validation methods were investigated to build a new model for enhancing the pCR prediction for patients admitted to our department. The patients were divided into training group (75%) and validation group (25%) according to their demographic. The least absolute shrinkage and selection operator (LASSO) logistic regression was used to reduce the dimensionality of the extracted features of the training group and select the optimal ones; the performance of the reference GLM and enhanced models was compared through the area under curve (AUC) of the receiver operating characteristics. Results The value of AUC of the reference model was 0.831 (95% CI, 0.701-0.961), and 0.828 (95% CI, 0.700-0.956) in the original and new validation cohorts, respectively, showing a reproducibility in the applicability of the GLM model. Eight features were found to be significant with LASSO and used to establish an enhanced model. The AUC of the enhanced model of 0.926 (95% CI, 0.859-0.993) for training, and 0.926 (95% CI, 0.767-1.00) for the validation group shows better performance than the reference model. Conclusions The GLM model shows good reproducibility in predicting pCR in LARC; the enhanced model has the potential to improve prediction accuracy and may be a candidate in clinical practice.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Predicting the response to preoperative radiation or chemoradiation by a microarray analysis of the gene expression profiles in rectal cancer [J].
Akiyoshi, Takashi ;
Kobunai, Takashi ;
Watanabe, Toshiaki .
SURGERY TODAY, 2012, 42 (08) :713-719
[3]  
Barbaro B, 2010, RADIOGRAPHICS, V30, P699, DOI 10.1148/rg.303095085
[4]  
Boldrini L, 2020, RADIOTHER ONCOL, V152, pS405
[5]   Delta radiomics for rectal cancer response prediction with hybrid 0.35T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach [J].
Boldrini, Luca ;
Cusumano, Davide ;
Chiloiro, Giuditta ;
Casa, Calogero ;
Masciocchi, Carlotta ;
Lenkowicz, Jacopo ;
Cellini, Francesco ;
Dinapoli, Nicola ;
Azario, Luigi ;
Teodoli, Stefania ;
Gambacorta, Maria Antonietta ;
De Spirito, Marco ;
Valentini, Vincenzo .
RADIOLOGIA MEDICA, 2019, 124 (02) :145-153
[6]   Textural Parameters of Tumor Heterogeneity in 18F-FDG PET/CT for Therapy Response Assessment and Prognosis in Patients with Locally Advanced Rectal Cancer [J].
Bundschuh, Ralph A. ;
Dinges, Julia ;
Neumann, Larissa ;
Seyfried, Martin ;
Zsoter, Norbert ;
Papp, Laszlo ;
Rosenberg, Robert ;
Becker, Karen ;
Astner, Sabrina T. ;
Henninger, Martin ;
Herrmann, Ken ;
Ziegler, Sibylle I. ;
Schwaiger, Markus ;
Essler, Markus .
JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (06) :891-897
[7]   Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer [J].
Cusumano, Davide ;
Dinapoli, Nicola ;
Boldrini, Luca ;
Chiloiro, Giuditta ;
Gatta, Roberto ;
Masciocchi, Carlotta ;
Lenkowicz, Jacopo ;
Casa, Calogero ;
Damiani, Andrea ;
Azario, Luigi ;
Van Soest, Johan ;
Dekker, Andre ;
Lambin, Philippe ;
De Spirito, Marco ;
Valentini, Vincenzo .
RADIOLOGIA MEDICA, 2018, 123 (04) :286-295
[8]   Texture Analysis as Imaging Biomarker of Tumoral Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients Studied with 3-T Magnetic Resonance [J].
De Cecco, Carlo N. ;
Ganeshan, Balaji ;
Ciolina, Maria ;
Rengo, Marco ;
Meinel, Felix G. ;
Musio, Daniela ;
De Felice, Francesca ;
Raffetto, Nicola ;
Tombolini, Vincenzo ;
Laghi, Andrea .
INVESTIGATIVE RADIOLOGY, 2015, 50 (04) :239-245
[9]   Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radiochemotherapy of Rectal Cancer [J].
Dinapoli, Nicola ;
Barbaro, Brunella ;
Gatta, Roberto ;
Chiloiro, Giuditta ;
Casa, Calogero ;
Masciocchi, Carlotta ;
Damiani, Andrea ;
Boldrini, Luca ;
Gambacorta, Maria Antonietta ;
Dezio, Michele ;
Mattiucci, Gian Carlo ;
Balducci, Mario ;
van Soest, Johan ;
Dekker, Andre ;
Lambin, Philippe ;
Fiorino, Claudio ;
Sini, Carla ;
De Cobelli, Francesco ;
Di Muzio, Nadia ;
Gumina, Calogero ;
Passoni, Paolo ;
Manfredi, Riccardo ;
Valentini, Vincenzo .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04) :765-774
[10]   The American Joint Committee on Cancer: the 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM [J].
Edge, Stephen B. ;
Compton, Carolyn C. .
ANNALS OF SURGICAL ONCOLOGY, 2010, 17 (06) :1471-1474